Green Synthesis of NiO/TI-PCH Via Hydrotermal Method for Enhanced Catalytic Efficiency
Green Synthesis NiO/Ti-PCH melalui Metode Hidrotermal untuk Meningkatkan Efisiensi Katalitik
DOI:
https://doi.org/10.31938/jsn.v15i2.765Keywords:
nickel dispersed, titanium-pillared montmorillonite, heterogeneous catalysis, catalytic activity, physicochemical catalystAbstract
Heterogeneous catalysis is a vital field in chemical engineering, offering improved efficiency and selectivity in various catalytic processes. This study focuses on the dispersion of nickel into titanium-pillared montmorillonite (NiO/Ti-PCH) to enhance its catalytic properties. The primary objective is to synthesize and characterize the catalyst to evaluate its potential in catalytic applications, particularly in reactions requiring high surface area and stability. The synthesis of NiO/Ti-PCH was achieved through the intercalation of titanium and nickel into montmorillonite, followed by a series of characterizations using Fourier Transform Infrared Spectroscopy (FTIR), Gas Sorption Analyzer (GSA), and Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX). FTIR analysis was utilized to confirm the successful formation of Ti-O-Ni bonds, indicating the effective dispersion of nickel and titanium on the catalyst surface. GSA provided insights into the surface area and porosity of the synthesized material, while SEM-EDX offered information on the morphology and elemental composition. The results indicated a significant increase in the surface area of NiO/Ti-PCH due to the formation of titanium and nickel pillars, enhancing the accessibility of active sites for reactions. The FTIR spectra confirmed the presence of Ti-O-Ni bonds, which play a crucial role in improving catalytic activity. Additionally, the catalyst exhibited excellent thermal stability, making it suitable for high-temperature applications. In conclusion, the synthesized NiO/Ti-PCH demonstrates enhanced catalytic activity and thermal stability, positioning it as a promising candidate for various industrial applications. The findings underscore the importance of utilizing pillared clays in the development of efficient heterogeneous catalysts for sustainable chemical processes.
Downloads
References
Agustian, E., Rinaldi, N., Adillina, I. B., Sulaswatty, A., & Kusuma, D. A. (2018). Preparation of aluminium and cobalt pillared bentonite using ultrasonic treatment for vanillin catalyst. AIP Conference Proceedings, 2024(2000), 1–6. https://doi.org/10.1063/1.5064330
Antoshkina, E., Rakova, O., & Efremov, A. (2019). Investigation of NiO-Al2 O3-SiO2 properties via xrd, ftir techniques and thermal analysis. Materials Science Forum, 946 MSF, 134–138. https://doi.org/10.4028/www.scientific.net/MSF.946.134
Araujo, R. O., Santos, V. O., Ribeiro, F. C. P., Chaar, J. da S., Falcão, N. P. S., & de Souza, L. K. C. (2021). One-step synthesis of a heterogeneous catalyst by the hydrothermal carbonization of acai seed. Reaction Kinetics, Mechanisms and Catalysis, 134(1), 199–220. https://doi.org/10.1007/s11144-021-02059-9
Arima, H., Hiraide, S., & Watanabe, S. (2024). Elucidating the particle size-dependent guest-induced structural transition of flexible metal-organic frameworks by exploring cooperative nature. Journal of Materials Chemistry A, 12(35), 23647–23657. https://doi.org/10.1039/d4ta04222k
Belver, C., Bedia, J., & Rodriguez, J. J. (2015). Titania-clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental, 176–177, 278–287. https://doi.org/10.1016/j.apcatb.2015.04.004
Danková, Z., Mockov?iaková, A., & Dolinská, S. (2014). Influence of ultrasound irradiation on cadmium cations adsorption by montmorillonite. Desalination and Water Treatment, 52(28–30), 5462–5469. https://doi.org/10.1080/19443994.2013.814006
Darmawan, A., Sulaksono, S., Arifin, M. S., Muhtar, H., & Sriyanti, S. (2024). Highly efficient TiO 2 -pillared smectite clay with Ni and Co doping for Rhodamine B removal: kinetics of adsorption and photodegradation . Clays and Clay Minerals, 72, 1–11. https://doi.org/10.1017/cmn.2024.12
Fatimah, I., Rubiyanto, D., & Huda, T. (2015). Preparation and characterization of Ni/Zr-Saponite as catalyst in catalytic hydrogen transfer reaction of isopulegol. Materials Science Forum, 827, 311–316. https://doi.org/10.4028/www.scientific.net/MSF.827.311
Fatimah, I., Yahya, A., Purwiandono, G., & Sagadevan, S. (2023). WO3 dispersed on a titanium porous clay heterostructure as a highly efficient visible light-active photocatalyst. Inorganic Chemistry Communications, 158(P1), 111548. https://doi.org/10.1016/j.inoche.2023.111548
Guan, B., Yu, J., Guo, S., Yu, S., & Han, S. (2020). Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity. Nanoscale Advances, 2(3), 1352–1357. https://doi.org/10.1039/c9na00760a
Haneda, M., & Hamada, H. (2022). Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. Comptes Rendus - Chimie, 15, 1–12. http://dx.doi.org/10.1016/j.crci.2015.07.016
Hartanto, D., Purbaningtias, T. E., Fansuri, H., & Prasetyoko, D. (2011). Karakterisasi Struktur Pori dan Morfologi ZSM-2 Mesopori yang Disintesis dengan Variasi Waktu Aging. Jurnal Ilmu Dasar, 12(1), 80–90.
Harunrasjid, M. C., Aritonang, A. B., Wibowo, M. A., Ardiningsih, P., & Adhitiyawarman, A. (2023). Synthesis of Ni doped-TiO2 Thin Film Photocatalysts on Glass Surfaces. IJCA (Indonesian Journal of Chemical Analysis), 6(1), 85–96. https://doi.org/10.20885/ijca.vol6.iss1.art9
Jinesh, C. M., Antonyraj, C. A., & Kannan, S. (2009). Isomerization of eugenol and alkenyl aromatics of perfumery interest over Ni-containing layered double hydroxides as solid base catalysts. Catalysis Today, 141(1–2), 176–181. https://doi.org/10.1016/j.cattod.2008.03.023
Lai, F., Yan, F., Wang, Y., Li, C., Cai, J., & Zhang, Z. (2021). Tungstophosphoric acid supported on metal/Si-pillared montmorillonite for conversion of biomass-derived carbohydrates into methyl levulinate. Journal of Cleaner Production, 314(June), 128072. https://doi.org/10.1016/j.jclepro.2021.128072
Meng, X., Wang, X., Zhang, D., Luo, H., Xu, C., & Liu, S. (2020). Electrodeposition of Ni-Mo/TiO2 nanocomposite coatings on low-carbon steels for improving corrosion resistance. International Journal of Electrochemical Science, 15(7), 6198–6206. https://doi.org/10.20964/2020.07.35
Mohammed, K. S., Atlabachew, M., Aragaw, B. A., & Asmare, Z. G. (2024). Synthesis of Kaolin-Supported Nickel Oxide Composites for the Catalytic Oxidative Degradation of Methylene Blue Dye. ACS Omega, 9(4), 4287–4299. https://doi.org/10.1021/acsomega.3c05126
Natsir, M., Putri, Y. I., Wibowo, D., Maulidiyah, M., Salim, L. O. A., Azis, T., Bijang, C. M., Mustapa, F., Irwan, I., Arham, Z., & Nurdin, M. (2021). Effects of Ni–TiO2 Pillared Clay–Montmorillonite Composites for Photocatalytic Enhancement Against Reactive Orange Under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 31(8), 3378–3388. https://doi.org/10.1007/s10904-021-01980-9
Neethu, P. P., Sreenavya, A., & Sakthivel, A. (2021). Molybdate Stabilized Magnesium?Iron Hydrotalcite Materials: Potential Catalysts for Isoeugenol to Vanillin and Olefin Epoxidation. Applied Catalysis A: General, 623(April), 118292. https://doi.org/10.1016/j.apcata.2021.118292
Petcu, G., Papa, F., Atkinson, I., Baran, A., Apostol, N. G., Petrescu, S., Richaudeau, L., Blin, J. L., & Parvulescu, V. (2023). Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties. Nanomaterials, 13(15). https://doi.org/10.3390/nano13152200
Shimizu, S., & Matubayasi, N. (2024). Sorption Hysteresis: A Statistical Thermodynamic Fluctuation Theory. Langmuir, 40(22), 11504–11515. https://doi.org/10.1021/acs.langmuir.4c00606
Suresh, L., Snega, R., Geetha Sravanthy, P., & Saravanan, M. (2024). Phytosynthesis of Nickel Oxide Nanoparticles and Their Antioxidant and Antibacterial Efficacy Studies. Cureus, 16(4), 1–13. https://doi.org/10.7759/cureus.58064
Vasu, D., Karthi Keyan, A., Sakthinathan, S., & Chiu, T. W. (2022). Investigation of electrocatalytic and photocatalytic ability of Cu/Ni/TiO2/MWCNTs Nanocomposites for detection and degradation of antibiotic drug Furaltadone. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-04890-z
Wang, H., Cao, M., Huang, R., Tao, C., Pan, W., Hao, H., Yao, Z., & Liu, H. (2021). Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. Journal of the European Ceramic Society, 41(7), 4129–4137. https://doi.org/10.1016/j.jeurceramsoc.2021.02.042
Wróblewska, A., Makuch, E., Retajczyk, M., Sre?scek-Nazzal, J., Koren, Z. C., & Michalkiewicz, B. (2021). Synthesis, characterization and application of the SBA-16 catalyst modified with titanium(IV) chloride in the eugenol isomerization. Microporous and Mesoporous Materials, 311(July 2020). https://doi.org/10.1016/j.micromeso.2020.110685
Zhang, Y., Wang, Z., Si, S., & Yue, J. (2023). Study on the Effect of Pore Structure on Desorption Hysteresis of Deep Coking Coal under High-Temperature and High-Pressure Conditions. ACS Omega. https://doi.org/10.1021/acsomega.3c07528
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amri Yahya, Lany Nurhayati, Setty Utami

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.