Optimization of The Success Rate of The Epicotyl Grafting Method in Nutmeg with Different Rootstock Stages and Scion Leaf Numbers
DOI:
https://doi.org/10.31938/jsn.v15i2.790Keywords:
Epicotyl grafting, Myristica fragrans, Rootstock stage, Scion leaf numberAbstract
The availability of seeds with known sex types is one of the obstacles in nutmeg cultivation. Epicotyl grafting using rootstocks aged 20–30 days is one of the solutions to overcome this issue. The objective of this study is to determine the optimal stage/age of rootstocks and the number of leaves of the scion to improve the success rate of nutmeg through epicotyl grafting. The experimental design used is a Randomized Block Design (RBD) with factorial pattern, repeated three times. The first factor is the stage of rootstock age, categorized as: 1 month (without leaves), 2 months (2 leaves), 3 months (3 leaves), and 4 months (4 leaves). The second factor is the number of leaves on the scion : 2 leaves cut in half, 2 leaves, and 3 leaves. Variables observation i.e. : a) C/N ratio in the rootstock and scion before grafting, b) plant morphology (Number of leaves, shoot length, shoot diameter, number of branches, and plant height.), and c) plant physiology (grafting success rate, graft union length, photosynthesis rate, and leaf chlorophyll content). The results showed that all rootstock stages and scion leaf number could be used for nutmeg grafting, with a 67-100% success rate. The best recommendation treatments are rootstocks with two leaves grafted to scions with two leaves, and rootstocks with four leaves grafted to scions with three leaves.
Downloads
References
Balasubramanian, V. K., Rivas-Ubach, A., Winkler, T., Mitchell, H., Moran, J., & Ahkami, A. H. (2023). Modulation of polar auxin transport identifies the molecular determinants of source–sink carbon relationships and sink strength in poplar. Tree Physiology, 1–20. https://doi.org/10.1093/treephys/tpad073
Chen, Y., Sun, X., Zheng, C., Zhang, S., & Yang, J. (2018). Grafting Onto Artemisia annua Improves Drought Tolerance in Chrysanthemum by Enhancing Photosynthetic Capacity. Horticultural Plant Journal, 4(3), 117–125. https://doi.org/10.1016/j.hpj.2018.03.008
Ditjenbun. (2023). Statistik Perkebunan Jilid I 2022-2024. http://repo.iain-tulungagung.ac.id/5510/5/BAB 2.pdf
Erza, R. K., Karmanah, K., & Nurlela, N. (2022). Secondary Metabolites and Potential Antioxidants of Nutmeg (Myristica fragrans Houtt) Mace from West Java. Jurnal Sains Natural, 12(2), 65. https://doi.org/10.31938/jsn.v12i2.380
Frank, M. H., Komarov, S., Wang, Q., Li, K., Hecking, M., Fowler, H., Ravenburg, C., Widmier, A., Johnson, A., Thomas, H., Coneva, V., Chitwood, D. H., & Tai, Y.-C. (2022). Integrated PET and confocal imaging informs a functional timeline for the dynamic process of vascular reconnection during grafting. https://doi.org/10.1101/2022.10.27.513862
Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14–22. https://doi.org/10.1016/j.scienta.2010.12.007
Islam, M. M., Haque, M. A., & Hossain, M. M. (2003). Effect of age rootstock and time of grafting on success of epycotil grafting in Jackfruit (Artocarpus heterophylus L.). Asian Journal of Plant Sciences, 2(14), 1047–1051.
Kaihatu, S., Pesireron, M., Ohorella, I., Senewe, R. E., Waas, E. D., & Gaffar, A. (2021). Effect of natural male and female (sex ratio) on nutmeg (Myristica fragrans) production on Maluku. E3S Web of Conferences, 306. https://doi.org/10.1051/e3sconf/202130601019
Kebrom, T. H., & Mullet, J. E. (2015). Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell and Environment, 38(8), 1471–1478. https://doi.org/10.1111/pce.12500
Landhäusser, S. M., Wiley, E. T., Solarik, K. A., Kulbaba, S. P., & Goeppel, A. E. (2023). The Importance of Initial Seedling Characteristics in Controlling Allocation to Growth and Reserves under Different Soil Moisture Conditions. Forests, 14(4). https://doi.org/10.3390/f14040796
Mauro, R. P., Agnello, M., Distefano, M., Sabatino, L., Primo, A. S. B., Leonardi, C., & Giuffrida, F. (2020). Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy, 10(1). https://doi.org/10.3390/agronomy10010137
Mintah, F. D. (2018). Sex Determination in Nutmeg Seedlings Using Scar Primers. Journal of Horticulture and Plant Research, 3, 40–47. https://doi.org/10.18052/ www.scipress.com/jhpr.3.40
Rasool, A., Mansoor, S., Bhat, K. M., Hassan, G. I., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.590847
Rema, J., Krishnamoorthy, B., & Mathew, P. A. (1997). Vegetative propagation of major tree spices a, review. In Journal of Spices and Aromatic Crops (Vol. 6, Issue 2).
Rostiana, O., Purwiyanti, S., Heryanto, R., & Arlianti, T. (2013). Sex Determination in Nutmeg-Progenies Based on Morphological and SSR-DNA Markers. Proceeding of the International Seminar on Spices, Medicinal, and Aromatic Plants (SMAPs), June. https://www.researchgate.net/publication/304244916
Ruhnayat, A., Rostiana, O., & Syakir, M. (2023). The improvement of grafting success of nutmeg (Myristica fragrans Hout.) by hooding and fogging. IOP Conference Series: Earth and Environmental Science, 1172(1). https://doi.org/10.1088/1755-1315/1172/1/012016
Sudjud, S., Abdullah, H., Umasugi, B., Hadun, R., & Rachman, I. Abd. (2022). Perbanyakan Tanaman Pala (Myristica fragrans Houtt) Dengan Metode Pembiakan Vegetatif. Savana Cendana, 7(01), 21–22. https://doi.org/10.32938/sc.v7i01.1795
Talebzadeh, F., & Valeo, C. (2022). Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. IOP Conference Series: Earth and Environmental Science, 1006(1). https://doi.org/10.1088/1755-1315/1006/1/012007
Vittal, H., Sharma, N., Dubey, A. K., Shivran, M., Singh, S. K., Meena, M. C., Kumar, N., Sharma, N., Singh, N., Pandey, R., Bollinedi, H., Singh, B. P., & Sharma, R. M. (2023). Rootstock-mediated carbohydrate metabolism, nutrient contents, and physiological modifications in regular and alternate mango (Mangifera indica L.) scion varieties. PLoS ONE, 18(5 May). https://doi.org/10.1371/journal.pone.0284910
Wang, C., Heng, Y., Xu, Q., Zhou, Y., Sun, X., Wang, Y., Yao, W., Lian, M., Li, Q., Zhang, L., Niinemets, Ü., Hölscher, D., Gielis, J., Niklas, K. J., & Shi, P. (2024). Scaling relationships between the total number of leaves and the total leaf area per culm of two dwarf bamboo species. Ecology and Evolution, 14(7). https://doi.org/10.1002/ece3.70002
Yang, L., Xia, L., Zeng, Y., Han, Q., & Zhang, S. (2022). Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.1015317
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mohamad Rahmad Suhartanto, Agus Ruhnayat, A Qadir, O Rostiana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.