Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting

Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting

Authors

  • Haris Prayudha Setyawan Universitas Negeri Padang
  • Okta Suryani Universitas Negeri Padang

DOI:

https://doi.org/10.31938/jsn.v14i1.652

Keywords:

Titanium oxide, Metal doping, Photocatalyst, Photochemical water splitting, Renewable energy

Abstract

This article focuses on the modification of titanium oxide (TiO2) using metal doping to improve its photocatalytic activity in photochemical water splitting systems. TiO2 is a widely used photocatalyst, which has a wide band gap energy and rapid recombination of photogenerated electron-hole pairs, thus reducing the efficiency of photochemical water splitting systems. Metal doping, such as Pt, Cu, Fe, and V metals can lower the band gap energy of the photocatalyst, increase the absorption of visible light, and reduce electron-hole recombination. Modified TiO2 shows promising results in photochemical water splitting, utilising a wider range of visible light from the solar spectrum thereby improving the efficiency of the photochemical water splitting system.

Downloads

Download data is not yet available.

References

Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A. S., Ahmed, A., & Muneer, M. (2017). Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, 4(1), 015022. https://doi.org/10.1088/2053-1591/aa576d

Aljar, M. A. A., Zulqarnain, M., Shah, A., Akhter, M. S., & Iftikhar, F. J. (2020). A review of renewable energy generation using modified titania for photocatalytic water splitting. AIP Advances, 10(7), 070701. https://doi.org/10.1063/5.0006196

Aprilia, A., Putri Hanavi, D., Safriani, L., Bahtiar, A., Suryaningsih, S., & Rahayu Dwi Agustini, R. (2020). Sifat fotokatalitik serbuk ZnO terdoping aluminium dalam mendegradasi larutan metil biru. Jurnal Ilmu dan Inovasi Fisika, 4(1), 34–45. https://doi.org/10.24198/jiif.v4i1.26143

Aritonang, A. B., & Syahbanu, I. (2020). Sintesis TiO2/Ti terdoping logam Fe3+ menggunakan metode anodisasi dengan bantuan sinar tampak. Jurnal Kimia Khatulistiwa, 3(8), 45–52.

Aroob, S., Carabineiro, S. A. C., Taj, M. B., Bibi, I ., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., & Sillanpää, M. (2023). Green synthesis and photocatalytic dye degradation activity of CuO nanoparticles. Catalysts, 13(3), 502. https://doi.org/10.3390/catal13030502

Balkan, N., Erol, A., Balkan, N., & Erol, A. (2021). Intrinsic and extrinsic semiconductors. 37–78. https://doi.org/10.1007/978-3-319-44936-4_2

Belfaa, K., Lassoued, M. S., Ammar, S., & Gadri, A. (2018). Synthesis and characterization of V-doped TiO2 nanoparticles through polyol method with enhanced photocatalytic activities. Journal of Materials Science: Materials in Electronics, 29(12), 10269–10276. https://doi.org/10.1007/s10854-018-9080-6

Chen, S.-H., Jiang, Y.-S., & Lin, H. (2020). Easy synthesis of BiVO4 for photocatalytic overall water splitting. ACS Omega, 5(15), 8927–8933. https://doi.org/10.1021/acsomega.0c00699

Di Paola, A., Bellardita, M., Ceccato, R., Palmisano, L., & Parrino, F. (2009). Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. The Journal of Physical Chemistry C, 113(34), 15166–15174. https://doi.org/10.1021/jp904673e

Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the least known TiO2 photocatalyst. Catalysts, 3(1), 36–73. https://doi.org/10.3390/catal3010036

Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules, 26(6), 1687. https://doi.org/10.3390/molecules26061687

Fakhrutdinova, E., Reutova, O., Maliy, L., Kharlamova, T., Vodyankina, O., & Svetlichnyi, V. (2022). Laser-based synthesis of TiO2-Pt photocatalysts for hydrogen generation. Materials, 15(21), Article 21. https://doi.org/10.3390/ma15217413

Feng, Y., Cheng, H., Han, J., Zheng, X., Liu, Y., Yang, Y., & Zhang, L. (2017). Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion. Chinese Chemical Letters, 28(12), 2254–2258. https://doi.org/10.1016/j.cclet.2017.10.025

Guan, X., Zong, S., Tian, L., Zhang, Y., & Shi, J. (2022). Construction of SrTiO3–LaCrO3 solid solutions with consecutive band structures for photocatalytic H2 evolution under visible light irradiation. Catalysts, 12(10), Article 10. https://doi.org/10.3390/catal12101123

Haggerty, J. E. S., Schelhas, L. T., Kitchaev, D. A., Mangum, J. S., Garten, L. M., Sun, W., Stone, K. H., Perkins, J. D., Toney, M. F., Ceder, G., Ginley, D. S., Gorman, B. P., & Tate, J. (2017). High-fraction brookite films from amorphous precursors. Scientific Reports, 7(1), 15232. https://doi.org/10.1038/s41598-017-15364-y

Harjanto, N. T. (2016). Dampak lingkungan pusat listrik tenaga fosil dan prospek pltn sebagai sumber energi listrik nasional. PIN Pengelolaan Instalasi Nuklir, 01.

Jaafar, S. N. H., Minggu, L. J., Arifin, K., Kassim, M. B., & Wan, W. R. D. (2017). Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews, 78, 698–709. https://doi.org/10.1016/j.rser.2017.04.118

Jiang, D., Otitoju, T. A., Ouyang, Y., Shoparwe, N. F., Wang, S., Zhang, A., & Li, S. (2021). A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts, 11(9), Article 9. https://doi.org/10.3390/catal11091039

Kawawaki, T., Kataoka, Y., Ozaki, S., Kawachi, M., Hirata, M., & Negishi, Y. (2021). Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 57(4), 417–440. https://doi.org/10.1039/D0CC06809H

Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W., & Lee, J. S. (2019). Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48(7), 1908–1971. https://doi.org/10.1039/C8CS00699G

Kustiningsih, I., Mareta, H., Mustofa, D., & Slamet. (2011). Pengaruh morfologi TiO2 dan dopant platina terhadap produksi hidrogen dari air dengan metode fotokatalisis. Indonesian Journal of Materials Science, 14(1), 11–16.

Liu, X., Zhai, H., Wang, P., Zhang, Q., Wang, Z., Liu, Y., Dai, Y., Huang, B., Qin, X., & Zhang, X. (2019). Synthesis of a WO 3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation. Catalysis Science & Technology, 9(3), 652–658. https://doi.org/10.1039/C8CY02375A

Maeda, K., & Domen, K. (2010). Photocatalytic water splitting: Recent progress and future challenges. The Journal of Physical Chemistry Letters, 1(18), 2655–2661. https://doi.org/10.1021/jz1007966

Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47–74. https://doi.org/10.1016/j.apcata.2018.02.010

Mandade, P. (2021). Introduction, basic principles, mechanism, and challenges of photocatalysis. In Handbook of Nanomaterials for Wastewater Treatment (pp. 137–154). Elsevier. https://doi.org/10.1016/B978-0-12-821496-1.00016-7

Muliastri, D. (2018). Aplikasi komposit RGO–CuO sebagai fotokatalis untuk konversi CO2 menjadi metanol di bawah irradiasi sinar tampak [Institute Of Technology Sepuluh Nopember]. https://repository.its.ac.id/56633/1/02511650012004_Master_Tesis.pdf

Nguyen, T. D., Nguyen, V.-H., Nanda, S., Vo, D.-V. N., Nguyen, V. H., Van Tran, T., Nong, L. X., Nguyen, T. T., Bach, L.-G., Abdullah, B., Hong, S.-S., & Van Nguyen, T. (2020). BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environmental Chemistry Letters, 18(6), 1779–1801. https://doi.org/10.1007/s10311-020-01039-0

Nurullita, N., & Zainul, R. (2022). Pengaruh pengadukan pada degradasi methylene blue menggunakan fotokatalis ZnO terdoping Cu. Periodic, 11(3), 43–47.

Patial, S., Hasija, V., Raizada, P., Singh, P., Khan Singh, A. A. P., & Asiri, A. M. (2020). Tunable photocatalytic activity of SrTiO3 for water splitting : strategies and future scenario. Journal of Environmental Chemical Engineering, 8(3), 103791. https://doi.org/10.1016/j.jece.2020.103791

Phoon, B. L., Lai, C. W., Juan, J. C., Show, P., & Chen, W. (2019). A review of synthesis and morphology of SrTiO3 for energy and other applications. International Journal of Energy Research, 43(10), 5151–5174. https://doi.org/10.1002/er.4505

Raguram, T., & Rajni, K. S. (2022). Synthesis and characterisation of Cu—doped TiO2 nanoparticles for DSSC and photocatalytic applications. International Journal of Hydrogen Energy, 47(7), 4674–4689. https://doi.org/10.1016/j.ijhydene.2021.11.113

Rahman, Z. U., Wei, N., Feng, M., & Wang, D. (2019). TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. International Journal of Hydrogen Energy, 44(26), 13221–13231. https://doi.org/10.1016/j.ijhydene.2019.03.176

Ratnawati, R., & Slamet, S. (2012). Potensi titania nanotube array dan aplikasinya dalam produksi hidrogen dan pengolahan limbah. Jurnal Kimia dan Kemasan, 34(2), 248–261. https://doi.org/10.24817/jkk.v34i2.1861

Renganathan, S., Geetha, D., & Ramesh, P. (2015). Photocatalytic activity of plant mediated biosynthesized silver nano particles using methyl blue under Natural Sunlight. Int. J. Adv. Sci. Eng., 2, 22–25.

Riyani, K. (2012). Sintesis dan karakterisasi fotokatalis TiO2–Cu aktif sinar tampak. Prosiding Seminar NasionaL, 118–124.

Suryani, O., Higashino, Y., Sato, H., & Kubo, Y. (2019). Visible-to-near-infrared light-driven photocatalytic hydrogen production using dibenzo-BODIPY and Phenothiazine Conjugate as organic photosensitizer. ACS Applied Energy Materials, 2(1), 448–458. https://doi.org/10.1021/acsaem.8b01474

Susilo, B. E. (2021). Produksi gas hidrogen melalui photocatalytic water splitting menggunakan fotokatalis Cu2O/TiO2. FMIPA UNNES. https://mipa.unnes.ac.id/v3/2021/03/produksi-gas-hidrogen-melalui-photocatalytic-water-splitting-menggunakan-fotokatalis-cu2o-tio2/

Takata, T., & Domen, K. (2017). Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Transactions, 46(32), 10529–10544. https://doi.org/10.1039/C7DT00867H

Tian, L., Guan, X., Dong, Y., Zong, S., Dai, A., Zhang, Z., & Guo, L. (2023). Improved overall water splitting for hydrogen production on aluminium-doped SrTiO3 photocatalyst via tuned surface band bending. Environmental Chemistry Letters, 21(3), 1257–1264. https://doi.org/10.1007/s10311-023-01580-8

Tian, L., Li, Z., Xu, X., & Zhang, C. (2021). Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 9(23), 13459–13470. https://doi.org/10.1039/D1TA01108A

Vaiano, V., Iervolino, G., Sannino, D., Murcia, J. J., Hidalgo, M. C., Ciambelli, P., & Navío, J. A. (2016). Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Applied Catalysis B: Environmental, 188, 134–146. https://doi.org/10.1016/j.apcatb.2016.02.001

Wang, Z., Li, C., & Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 48(7), 2109–2125. https://doi.org/10.1039/C8CS00542G

Zhu, S., & Wang, D. (2017). Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Advanced Energy Materials, 7(23), 1700841. https://doi.org/10.1002/aenm.201700841

Downloads

Published

2024-01-30

How to Cite

Haris Prayudha Setyawan, & Okta Suryani. (2024). Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting. JURNAL SAINS NATURAL, 14(1), 01–12. https://doi.org/10.31938/jsn.v14i1.652

Issue

Section

Mini Review

Metrics

Loading...