Modified Titanium Oxide with Metal Doping as Photocatalyst in Photochemical Water Splitting
DOI:
https://doi.org/10.31938/jsn.v14i1.652Keywords:
Titanium oxide, Metal doping, Photocatalyst, Photochemical water splitting, Renewable energyAbstract
This article focuses on the modification of titanium oxide (TiO2) using metal doping to improve its photocatalytic activity in photochemical water splitting systems. TiO2 is a widely used photocatalyst, which has a wide band gap energy and rapid recombination of photogenerated electron-hole pairs, thus reducing the efficiency of photochemical water splitting systems. Metal doping, such as Pt, Cu, Fe, and V metals can lower the band gap energy of the photocatalyst, increase the absorption of visible light, and reduce electron-hole recombination. Modified TiO2 shows promising results in photochemical water splitting, utilising a wider range of visible light from the solar spectrum thereby improving the efficiency of the photochemical water splitting system.
Downloads
References
Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A. S., Ahmed, A., & Muneer, M. (2017). Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, 4(1), 015022. https://doi.org/10.1088/2053-1591/aa576d
Aljar, M. A. A., Zulqarnain, M., Shah, A., Akhter, M. S., & Iftikhar, F. J. (2020). A review of renewable energy generation using modified titania for photocatalytic water splitting. AIP Advances, 10(7), 070701. https://doi.org/10.1063/5.0006196
Aprilia, A., Putri Hanavi, D., Safriani, L., Bahtiar, A., Suryaningsih, S., & Rahayu Dwi Agustini, R. (2020). Sifat fotokatalitik serbuk ZnO terdoping aluminium dalam mendegradasi larutan metil biru. Jurnal Ilmu dan Inovasi Fisika, 4(1), 34–45. https://doi.org/10.24198/jiif.v4i1.26143
Aritonang, A. B., & Syahbanu, I. (2020). Sintesis TiO2/Ti terdoping logam Fe3+ menggunakan metode anodisasi dengan bantuan sinar tampak. Jurnal Kimia Khatulistiwa, 3(8), 45–52.
Aroob, S., Carabineiro, S. A. C., Taj, M. B., Bibi, I ., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., & Sillanpää, M. (2023). Green synthesis and photocatalytic dye degradation activity of CuO nanoparticles. Catalysts, 13(3), 502. https://doi.org/10.3390/catal13030502
Balkan, N., Erol, A., Balkan, N., & Erol, A. (2021). Intrinsic and extrinsic semiconductors. 37–78. https://doi.org/10.1007/978-3-319-44936-4_2
Belfaa, K., Lassoued, M. S., Ammar, S., & Gadri, A. (2018). Synthesis and characterization of V-doped TiO2 nanoparticles through polyol method with enhanced photocatalytic activities. Journal of Materials Science: Materials in Electronics, 29(12), 10269–10276. https://doi.org/10.1007/s10854-018-9080-6
Chen, S.-H., Jiang, Y.-S., & Lin, H. (2020). Easy synthesis of BiVO4 for photocatalytic overall water splitting. ACS Omega, 5(15), 8927–8933. https://doi.org/10.1021/acsomega.0c00699
Di Paola, A., Bellardita, M., Ceccato, R., Palmisano, L., & Parrino, F. (2009). Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. The Journal of Physical Chemistry C, 113(34), 15166–15174. https://doi.org/10.1021/jp904673e
Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the least known TiO2 photocatalyst. Catalysts, 3(1), 36–73. https://doi.org/10.3390/catal3010036
Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules, 26(6), 1687. https://doi.org/10.3390/molecules26061687
Fakhrutdinova, E., Reutova, O., Maliy, L., Kharlamova, T., Vodyankina, O., & Svetlichnyi, V. (2022). Laser-based synthesis of TiO2-Pt photocatalysts for hydrogen generation. Materials, 15(21), Article 21. https://doi.org/10.3390/ma15217413
Feng, Y., Cheng, H., Han, J., Zheng, X., Liu, Y., Yang, Y., & Zhang, L. (2017). Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion. Chinese Chemical Letters, 28(12), 2254–2258. https://doi.org/10.1016/j.cclet.2017.10.025
Guan, X., Zong, S., Tian, L., Zhang, Y., & Shi, J. (2022). Construction of SrTiO3–LaCrO3 solid solutions with consecutive band structures for photocatalytic H2 evolution under visible light irradiation. Catalysts, 12(10), Article 10. https://doi.org/10.3390/catal12101123
Haggerty, J. E. S., Schelhas, L. T., Kitchaev, D. A., Mangum, J. S., Garten, L. M., Sun, W., Stone, K. H., Perkins, J. D., Toney, M. F., Ceder, G., Ginley, D. S., Gorman, B. P., & Tate, J. (2017). High-fraction brookite films from amorphous precursors. Scientific Reports, 7(1), 15232. https://doi.org/10.1038/s41598-017-15364-y
Harjanto, N. T. (2016). Dampak lingkungan pusat listrik tenaga fosil dan prospek pltn sebagai sumber energi listrik nasional. PIN Pengelolaan Instalasi Nuklir, 01.
Jaafar, S. N. H., Minggu, L. J., Arifin, K., Kassim, M. B., & Wan, W. R. D. (2017). Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews, 78, 698–709. https://doi.org/10.1016/j.rser.2017.04.118
Jiang, D., Otitoju, T. A., Ouyang, Y., Shoparwe, N. F., Wang, S., Zhang, A., & Li, S. (2021). A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts, 11(9), Article 9. https://doi.org/10.3390/catal11091039
Kawawaki, T., Kataoka, Y., Ozaki, S., Kawachi, M., Hirata, M., & Negishi, Y. (2021). Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 57(4), 417–440. https://doi.org/10.1039/D0CC06809H
Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W., & Lee, J. S. (2019). Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48(7), 1908–1971. https://doi.org/10.1039/C8CS00699G
Kustiningsih, I., Mareta, H., Mustofa, D., & Slamet. (2011). Pengaruh morfologi TiO2 dan dopant platina terhadap produksi hidrogen dari air dengan metode fotokatalisis. Indonesian Journal of Materials Science, 14(1), 11–16.
Liu, X., Zhai, H., Wang, P., Zhang, Q., Wang, Z., Liu, Y., Dai, Y., Huang, B., Qin, X., & Zhang, X. (2019). Synthesis of a WO 3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation. Catalysis Science & Technology, 9(3), 652–658. https://doi.org/10.1039/C8CY02375A
Maeda, K., & Domen, K. (2010). Photocatalytic water splitting: Recent progress and future challenges. The Journal of Physical Chemistry Letters, 1(18), 2655–2661. https://doi.org/10.1021/jz1007966
Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47–74. https://doi.org/10.1016/j.apcata.2018.02.010
Mandade, P. (2021). Introduction, basic principles, mechanism, and challenges of photocatalysis. In Handbook of Nanomaterials for Wastewater Treatment (pp. 137–154). Elsevier. https://doi.org/10.1016/B978-0-12-821496-1.00016-7
Muliastri, D. (2018). Aplikasi komposit RGO–CuO sebagai fotokatalis untuk konversi CO2 menjadi metanol di bawah irradiasi sinar tampak [Institute Of Technology Sepuluh Nopember]. https://repository.its.ac.id/56633/1/02511650012004_Master_Tesis.pdf
Nguyen, T. D., Nguyen, V.-H., Nanda, S., Vo, D.-V. N., Nguyen, V. H., Van Tran, T., Nong, L. X., Nguyen, T. T., Bach, L.-G., Abdullah, B., Hong, S.-S., & Van Nguyen, T. (2020). BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environmental Chemistry Letters, 18(6), 1779–1801. https://doi.org/10.1007/s10311-020-01039-0
Nurullita, N., & Zainul, R. (2022). Pengaruh pengadukan pada degradasi methylene blue menggunakan fotokatalis ZnO terdoping Cu. Periodic, 11(3), 43–47.
Patial, S., Hasija, V., Raizada, P., Singh, P., Khan Singh, A. A. P., & Asiri, A. M. (2020). Tunable photocatalytic activity of SrTiO3 for water splitting : strategies and future scenario. Journal of Environmental Chemical Engineering, 8(3), 103791. https://doi.org/10.1016/j.jece.2020.103791
Phoon, B. L., Lai, C. W., Juan, J. C., Show, P., & Chen, W. (2019). A review of synthesis and morphology of SrTiO3 for energy and other applications. International Journal of Energy Research, 43(10), 5151–5174. https://doi.org/10.1002/er.4505
Raguram, T., & Rajni, K. S. (2022). Synthesis and characterisation of Cu—doped TiO2 nanoparticles for DSSC and photocatalytic applications. International Journal of Hydrogen Energy, 47(7), 4674–4689. https://doi.org/10.1016/j.ijhydene.2021.11.113
Rahman, Z. U., Wei, N., Feng, M., & Wang, D. (2019). TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. International Journal of Hydrogen Energy, 44(26), 13221–13231. https://doi.org/10.1016/j.ijhydene.2019.03.176
Ratnawati, R., & Slamet, S. (2012). Potensi titania nanotube array dan aplikasinya dalam produksi hidrogen dan pengolahan limbah. Jurnal Kimia dan Kemasan, 34(2), 248–261. https://doi.org/10.24817/jkk.v34i2.1861
Renganathan, S., Geetha, D., & Ramesh, P. (2015). Photocatalytic activity of plant mediated biosynthesized silver nano particles using methyl blue under Natural Sunlight. Int. J. Adv. Sci. Eng., 2, 22–25.
Riyani, K. (2012). Sintesis dan karakterisasi fotokatalis TiO2–Cu aktif sinar tampak. Prosiding Seminar NasionaL, 118–124.
Suryani, O., Higashino, Y., Sato, H., & Kubo, Y. (2019). Visible-to-near-infrared light-driven photocatalytic hydrogen production using dibenzo-BODIPY and Phenothiazine Conjugate as organic photosensitizer. ACS Applied Energy Materials, 2(1), 448–458. https://doi.org/10.1021/acsaem.8b01474
Susilo, B. E. (2021). Produksi gas hidrogen melalui photocatalytic water splitting menggunakan fotokatalis Cu2O/TiO2. FMIPA UNNES. https://mipa.unnes.ac.id/v3/2021/03/produksi-gas-hidrogen-melalui-photocatalytic-water-splitting-menggunakan-fotokatalis-cu2o-tio2/
Takata, T., & Domen, K. (2017). Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Transactions, 46(32), 10529–10544. https://doi.org/10.1039/C7DT00867H
Tian, L., Guan, X., Dong, Y., Zong, S., Dai, A., Zhang, Z., & Guo, L. (2023). Improved overall water splitting for hydrogen production on aluminium-doped SrTiO3 photocatalyst via tuned surface band bending. Environmental Chemistry Letters, 21(3), 1257–1264. https://doi.org/10.1007/s10311-023-01580-8
Tian, L., Li, Z., Xu, X., & Zhang, C. (2021). Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 9(23), 13459–13470. https://doi.org/10.1039/D1TA01108A
Vaiano, V., Iervolino, G., Sannino, D., Murcia, J. J., Hidalgo, M. C., Ciambelli, P., & Navío, J. A. (2016). Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Applied Catalysis B: Environmental, 188, 134–146. https://doi.org/10.1016/j.apcatb.2016.02.001
Wang, Z., Li, C., & Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 48(7), 2109–2125. https://doi.org/10.1039/C8CS00542G
Zhu, S., & Wang, D. (2017). Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Advanced Energy Materials, 7(23), 1700841. https://doi.org/10.1002/aenm.201700841
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1970 Haris Prayudha Setyawan, Okta Suryani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.