Compatibility Testing of Synthesized TiO2 Nanoparticles on The Fast-Growing Wood Physical Properties

Compatibility Testing of Synthesized TiO2 Nanoparticles on The Fast-Growing Wood Physical Properties

Authors

  • Esti Prihatini Department of Forest Products, Faculty of Forestry and Environment, IPB University
  • Rohmat Ismail Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University https://orcid.org/0000-0002-6469-1328
  • Istie Sekartining Rahayu Department of Forest Products, Faculty of Forestry and Environment, IPB University https://orcid.org/0000-0003-4902-564X
  • Gilang Dwi Laksono Department of Forest Products, Faculty of Forestry and Environment, IPB University
  • Dhiya Khairunissa Universitas Nusa Bangsa

DOI:

https://doi.org/10.31938/jsn.v14i2.611

Keywords:

compatibility, TiO2 nanoparticles, jabon, impregnation

Abstract

Jabon wood (Anthochepalus cadamba) has inferior quality, so it is necessary to modify the wood to improve the quality of its physical properties, namely by impregnating TiO2 nanoparticles (NP-TiO2). This study aims to determine the right synthesis method for the synthesis of NP-TiO2 so as to improve the quality of the physical properties of jabon wood optimally. The results of FTIR testing showed that jabon wood has successfully impregnated NP-TiO2 by hydrothermal and solvothermal methods with ethanol, acetone, and methanol solvents with the identification of the functional group of Ti-O at wavenumber 533 cm-1 and the Ti-O-Ti functional group at wavenumber 679 cm-1 which is the bond formed in the framework of the TiO2 compound. The results of the physical properties test showed that NP-TiO2 which was successfully impregnated into wood was synthesized using hydrothermal and solvothermal methods, namely acetone, methanol, and ethanol, with a WPG value of 1.36%, 2.6%, 2.16%, and 1.61%, respectively. XRD test results show that jabon wood has successfully impregnated NP-TiO2 by hydrothermal and solvothermal methods using acetone, ethanol, and methanol solvents with the identification of anatase TiO2 crystal lattice and crystal sizes of 16.21, 15.94, 14.27, dan 15.75 nm, respectively.

Downloads

Download data is not yet available.

References

Abdelhamid, M., El-Hossary, F., Ghitas, A., Abd El-Rahman, A., & Ebnalwaled, K. (2021). Low-temperature hydrothermal synthesis of titanium dioxide nanoparticles for photocatalytic applications low-temperature hydrothermal synthesis of titanium dioxide nanoparticles for photocatalytic applications. IOP Conference Series: Materials Science and Engineering, 1171. https://doi.org/10.1088/1757-899X/1171/1/012008

Akhtari, M., & Nicholas, D. (2013). Evaluation of particulate zinc and copper as wood preservatives for termite control. European Journal of Wood and Wood Products, 71. https://doi.org/10.1007/s00107-013-0690-7

Bagheri, S., Shameli, K., & Abd Hamid, S. B. (2013). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry, 2013, 848205. https://doi.org/10.1155/2013/848205

Bak, M., & Németh, R. (2018). Effect of different nanoparticle treatments on the decay resistance of wood. Bioresources, 13, 7886–7899. https://doi.org/10.15376/biores.13.4.7886-7899

Behnajady, M. A., Eskandarloo, H., Modirshahla, N., & Shokri, M. (2011). Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination, 278(1–3), 10–17. https://doi.org/10.1016/j.desal.2011.04.019

Bi, W., Hui, D., Gaff, M., Lorenzo, R., Corbi, I., Corbi, O., & Ashraf, M. (2021). Effects of chemical modification and nanotechnology on wood properties. Nanotechnology Reviews, 10, 978–1008. https://doi.org/10.1515/ntrev-2021-0065

Chougala, L., Yatnatti, M., Linganagoudar, R., Kamble, R., & Kadadevarmath, J. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano- and Electronic Physics, 9, 4001–4005. https://doi.org/10.21272/jnep.9(4).04005

Coates, J. (2006). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a5606

Costa, R. D. F. S., Barbosa, M. L. S., Silva, F. J. G., Sousa, S. R., Pinto, A. G., Sousa, V. F. C., & Ferreira, B. O. (2023). The impact of the deterioration on wood by chlorine: an experimental study. Materials (Basel, Switzerland), 16(3). https://doi.org/10.3390/ma16030969

Dirna, F. C., Rahayu, I., Zaini, L. H., Darmawan, W., & Prihatini, E. (2020). Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. Journal of the Korean Wood Science and Technology, 48(1), 41–49. https://doi.org/10.5658/WOOD.2020.48.1.41

Doczekalska, B., & Zborowska, M. (2010). Wood chemical composition of selected fast growing species treated with NAOH part II: Non-structural substances. Wood Research, 55(3), 83–92.

Dong, Y., Yan, Y., Zhang, S., & Li, J. (2014). Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano-SiO2. BioResources, 9. https://doi.org/10.15376/biores.9.4.6028-6040

Hadi, Y., Rahayu, I., & Danu, S. (2013). Physical and mechanical properties of methyl methacrylate impregnated Jabon wood. Journal of the Indian Academy of Wood Science, 10. https://doi.org/10.1007/s13196-013-0098-3

Hargreaves, J. (2016). Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catalysis, Structure & Reactivity, 2, 33–37. https://doi.org/10.1080/2055074X.2016.1252548

Hazarika, A., & Maji, T. K. (2014). Properties of softwood polymer composites impregnated with nanoparticles and melamine formaldehyde furfuryl alcohol copolymer. Polymer Engineering & Science, 54(5), 1019–1029. https://doi.org/https://doi.org/10.1002/pen.23643

Jafari, armin, & Omidvar, A. (2018). The effect of nano copper oxide on physical properties and leaching resistance of wood-Polystyrene polymer. Journal of Wood and Forest Science and Technology, 25(1), 49–60. https://doi.org/10.22069/jwfst.2017.10565.1548

Kanchi, S., & Ahmed, S. (2018). Green Metal Nanoparticles: Synthesis, Characterization and their Applications-Nanoparticles Naturally.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/https://doi.org/10.1016/j.arabjc.2017.05.011

Kong-Win Chang, J., Duret, X., Berberi, V., Zahedi-Niaki, H., & Lavoie, J.-M. (2018). Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00117

Krisnawati, H., Kallio, M., & Kanninen, M. (2011). Anthocephalus cadamba Miq.: ekologi, silvikultur dan produktivitas. https://doi.org/10.17528/cifor/003481

Liao, J., Shi, L., Yuan, S., Zhao, Y., & Fang, J. (2009). Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities. The Journal of Physical Chemistry C, 113(43), 18778–18783. https://doi.org/10.1021/jp905720g

Mayerhöfer, T., & Popp, J. (2017). The electric field standing wave effect in infrared transflection spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,191.https://doi.org/10.1016/j.saa.2017.10.033

Melro, E., Filipe, A., Sousa, D., Valente, A. J. M., Romano, A., Antunes, F. E., & Medronho, B. (2020). Dissolution of kraft lignin in alkaline solutions. International Journal of Biological Macromolecules, 148, 688–695. https://doi.org/10.1016/j.ijbiomac.2020.01.153

Nam, C. T., Yang, W.-D., & Duc, L. M. (2013). Solvothermal synthesis of TiO2 photocatalysts in ketone solvents with low boiling points. Journal of Nanomaterials, 2013,627385.https://doi.org/10.1155/2013/627385

Osman, A. I., Blewitt, J., Abu-Dahrieh, J. K., Farrell, C., Al-Muhtaseb, A. H., Harrison, J., & Rooney, D. W. (2019). Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environmental Science and Pollution Research International, 26(36), 37228–37241. https://doi.org/10.1007/s11356-019-06594-w

Pereira, H., Graça, J., & Rodrigues, J. (2004). Wood Chemistry in Relation to Quality. Cheminform, 35. https://doi.org/10.1002/chin.200446298

Praveen, P., Viruthagiri, G., Mugundan, S., & Shanmugam, N. (2013). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles-Synthesized via sol-gel route. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 117, 622–629.

Prihatini, E., Maddu, A., Rahayu, I. S., Kurniati, M., & Darmawan, W. (2020). Improvement of physical properties of Jabon (Anthocephalus cadamba) through the impregnation of nano-SiO2 and melamin formaldehyde furfuril alcohol copolymer. IOP Conference Series: Materials Science and Engineering, 935(1). https://doi.org/10.1088/1757-899X/935/1/012061

Prihatini, E., Wahyuningtyas, I., Rahayu, I. S., & Ismail, R. (2023). Modification of fast-growing wood into magnetic wood with impregnation method using Fe3O4 nanoparticles. Jurnal Sylva Lestari, 11(2), 204–217. https://doi.org/10.23960/jsl.v11i2.651

Qu, Q., Geng, H., Peng, R., Cui, Q., Gu, X., Li, F., & Wang, M. (2010). Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy. Langmuir, 26(12), 9539–9546. https://doi.org/10.1021/la100121n

Rahayu, I., Darmawan, W., Nawawi, D. S., Prihatini, E., Ismail, R., & Laksono, G. D. (2022)a. Physical properties of fast-growing wood-polymer nano composite synthesized through TiO2 nanoparticle impregnation. Polymers14,(20).https://doi.org/10.3390/polym14204463

Rahayu, I., Darmawan, W., Nawawi, D. S., Prihatini, E., Ismail, R., Laksono, G. D., & Martha, R. (2023). Surface modification of fast-growing wood with a titanium-dioxide-based nanocoating to improve weathering resistance. Coatings, 13(11). https://doi.org/10.3390/coatings13111924

Rahayu, I., Darmawan, W., Nugroho, N., Nandika, D., & Marchal, R. (2014). Demarcation point between juvenile and mature wood in sengon (Falcataria moluccana) and jabon (Antocephalus cadamba). Journal of Tropical Forest Science, 26, 331–339.

Rahayu, I., Darmawan, W., Zaini, L. H., & Prihatini, E. (2020). Characteristics of fast-growing wood impregnated with nanoparticles. Journal of Forestry Research, 31(2),677–685. https://doi.org/10.1007/s11676-019-00902-3

Rahayu, I., Prihatini, E., Ismail, R., Darmawan, W., Karlinasari, L., & Laksono, G. D. (2022)b. Fast-growing magnetic wood synthesis by an in-situ method. Polymers, 14(11), 2137. https://doi.org/10.3390/polym14112137

Rassam, G., Abdi, Y., & Abdi, A. (2012). Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. Journal of Experimental Nanoscience, 7(4), 468476.https://doi.org/10.1080/17458080.2010.538086

Roque, R., Berrocal, A., Rodríguez Zúñiga, A., Vega Baudrit, J., & Chaves N, S. (2014). Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 46, 527–538.

Sharfudeen, B. F. J. M., Latheef, A. F. A., & Ambrose, R. V. (2017). Synthesis and characterization of TiO2 nanoparticles and investigation of antimicrobial activities against human pathogens. Journal of Pharmaceutical Sciences and Research, 9, 1604–1608.

Sjostrom E. (1993). Wood Chemistry Fundamentals and Applications. Academic Press: Laboratory of Wood Chemistry, Forest Products Department, Helsinki University of Technology, Espoo, Finland.

Sotelo Montes, C., Beaulieu, J., & Hernández, R. (2007). Genetic variation in wood mechanical properties of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 39, 578 – 590.

Standard, B. S. B. (1957). Standard 373–1957: methods of testing small clear specimens of timber. London, UK: British Standards Institution.

Sumadiyasa, M., & Manuaba, I. B. S. (2018). Determining crystallite size using scherrer formula, Williamson-Hull plot, and particle size with SEM. Buletin Fisika, 19, 28. https://doi.org/10.24843/BF.2018.v19.i01.p06

Sun, X., Xu, S., Gao, Y., Yue, M., Yue, Q., & Gao, B. (2017). 3D hierarchical golden wattle-like TiO2 microspheres: Polar acetone-based solvothermal synthesis and enhanced water purification performance. CrystEngComm, 19. https://doi.org/10.1039/C7CE00080D

Svora, P., Svorová Pawe?kowicz, S., Ecorchard, P., Plocek, J., Schieberová, A., Prošek, Z., Ptá?ek, P., Pošta, J., Targowski, P., Kuklík, P., & Jakubec, I. (2022). Study of Interactions between titanium dioxide coating and wood cell wall ultrastructure. Nanomaterials 12(15). https://doi.org/10.3390/nano12152678

Syahidah, & Cahyono, T. D. (2008). Stabilisasi dimensi kayu dengan aplikasi parafin cair. Perennial,4(1),18.https://doi.org/10.24259/perennial.v4i1.178

Teng, T. J., Mat Arip, M. N., Sudesh, K., Nemoikina, A., Jalaludin, Z., Ng, E.-P., & Lee, H.-L. (2018). Conventional technology and nanotechnology in wood preservation: a review. Bioresources, 13, 9220–9252. https://doi.org/10.15376/biores.13.4.Teng

Wang, M., Wang, W., He, B. L., Sun, M. L., Bao, Y. S., Yin, Y. S., Liu, L., Zou, W. Y., & Xu, X. F. (2011). Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution. Materials and Corrosion,62(4),320–325. https://doi.org/10.1002/maco.200905451

Downloads

Published

2024-04-30

How to Cite

Prihatini, E., Ismail, R., Sekartining Rahayu, I., Dwi Laksono, G., & Khairunissa, D. (2024). Compatibility Testing of Synthesized TiO2 Nanoparticles on The Fast-Growing Wood Physical Properties. JURNAL SAINS NATURAL, 14(2), 62–72. https://doi.org/10.31938/jsn.v14i2.611

Metrics

Loading...