Optimization and Mechanism Elucidation of Catalytic Photodegradation Methylene Blue by TiO2/Zeolite Coal Fly Ash Nanocomposite Under H2O2 Presence
DOI:
https://doi.org/10.31938/jsn.v14i2.722Keywords:
TiO2/Zeolite, Methylene Blue, Photodegradation, Nanocomposite, TiO2Abstract
The synthetic dye methylene blue is utilized in many industries. However, it harms the aquatic ecosystem. Methylene blue causes wastewater to become colored. If this colored waste is released into the environment, clean, colorless water will become colored. This work uses a zeolite coal fly ash/TiO2 nanocomposite to enhance the process and identify the photodegradation mechanism of Methylene Blue (MB). Our group has successfully synthesized this nanocomposite using a developed method, improving the materials' capacity for both photodegradation and adsorption. This study has proved nanocomposite performance to degrade methylene blue as a synthetic dye by optimizing the effects of H2O2 addition, catalyst dosage, pH, initial concentration of methylene blue, and irradiation period. The maximum photodegradation in this investigation was observed at a pH of 12 with a nanocomposite dose of 3 g/l and an addition of 8 ml/l of H2O2, and in this study, degradation efficiency reached 100% for an 18 mg/l MB concentration in a short period of 75 minutes. With a reaction rate constant of 0.0601 min-1, the reaction kinetics were described by a pseudo-first-order reaction kinetics model. UPLC-MS/MS QToF analysis revealed the result of chemicals produced by photocatalytic degradation of methylene blue fragmentation into simpler molecules.
Downloads
References
Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing: Process Intensification, 109, 178–189. https://doi.org/10.1016/j.cep.2016.08.016
Catalkaya, E. C., & Kargi, F. (2007). Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study. Journal of Hazardous Materials, 139(2), 244–253. https://doi.org/10.1016/j.jhazmat.2006.06.023
Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures and Nano-Objects, 21, 100407. https://doi.org/10.1016/j.nanoso.2019.100407
Desmiarti, R., Trianda, Y., Martynis, M., Viqri, A., Yamada, T., & Li, F. (2019). Phenol adsorption in water by granular activated carbon from coconut shell. International Journal of Technology, 10(8), 1488–1497. https://doi.org/10.14716/ijtech.v10i8.3463
Hu, H., Onyebueke, L., & Abatan, A. (2010). Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation. Journal of Minerals and Materials Characterization and Engineering, 09(04), 275–319. https://doi.org/10.4236/jmmce.2010.94022
Huang, X., Zhao, H., Hu, X., Liu, F., Wang, L., Zhao, X., Gao, P., & Ji, P. (2020). Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+. Journal of Hazardous Materials, 392(March), 122461. https://doi.org/10.1016/j.jhazmat.2020.122461
Kishor, R., Saratale, G. D., Saratale, R. G., Romanholo Ferreira, L. F., Bilal, M., Iqbal, H. M. N., & Bharagava, R. N. (2021). Efficient degradation and detoxification of methylene blue dye by a newly isolated ligninolytic enzyme producing bacterium Bacillus albus MW407057. Colloids and Surfaces B: Biointerfaces, 206(May), 111947. https://doi.org/10.1016/j.colsurfb.2021.111947
Kusumawardani, L. J., & Iryani, A. (2021). Photocatalytic Degradation of Phenol Using TiO2-Fe Under H2O2 Presence by Visible and Sunlight Irradiation. Jurnal Kimia Valensi, 7(2), 94–99. https://doi.org/10.15408/jkv.v7i2.20766
Kusumawardani, L. J., Iryani, A., & Sinaga, E. L. (2023). Modification of Zeolite Made from Coal Fly Ash with TiO2: Effect of Aging Time on Physical and Optical Properties. Makara Journal of Science, 27(1). https://doi.org/10.7454/mss.v27i1.1483
Kusumawardani, L. J., Iryani, A., & Yulianti, E. (2022). Photocatalytic Decolorization of Methylene Blue Using TiO2Fe Photocatalyst under Visible and Sunlight Irradiation. AIP Conference Proceedings, 2638(August). https://doi.org/10.1063/5.0104096
Kusumawardani, L. J., & Syahputri, Y. (2019). Study of structural and optical properties of Fe(III)-doped TiO 2 prepared by sol-gel method. IOP Conference Series: Earth and Environmental Science, 299(Iii), 012066. https://doi.org/10.1088/1755-1315/299/1/012066
Liu, X., Liu, Y., Lu, S., Guo, W., & Xi, B. (2018). Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation. Chemical Engineering Journal, 350(February), 131–147. https://doi.org/10.1016/j.cej.2018.05.141
Maraschi, F., Sturini, M., Speltini, A., Pretali, L., Profumo, A., Pastorello, A., Kumar, V., Ferretti, M., & Caratto, V. (2014). TiO2-modified zeolites for fluoroquinolones removal from wastewaters and reuse after solar light regeneration. Journal of Environmental Chemical Engineering, 2(4), 2170–2176. https://doi.org/10.1016/j.jece.2014.08.009
Pava-Gómez, B., Vargas-Ramírez, X., & Díaz-Uribe, C. (2018). Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 360, 13–25. https://doi.org/10.1016/j.jphotochem.2018.04.022
Peng, L., Ni, Y., Wei, X., Hanyu, W., Duoqiang, P., & Wangsuo, W. (2017). Removal of U(VI) from aqueous solution using TiO2 modified ?-zeolite. Radiochimica Acta, 105(12), 1005–1013. https://doi.org/10.1515/ract-2017-2765
Priya R., Stanly S., Kavitharani T., Mohammad Faruq, Sagadevan Suresh. (2020). Highly effective photocatalytic degradation of methylene blue using PrO2–MgO nanocomposites under UV light. Optik. 206 Desember 2019,2-8. http://doi.org/10.1016/j.ijleo.2020.164318
Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. (2010). Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157(2–3), 373–378. https://doi.org/10.1016/j.cej.2009.11.017
Saqib, N. U., Adnan, R., & Shah, I. (2019). Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light. Materials Research Express, 6(9). https://doi.org/10.1088/2053-1591/ab2eb8
Sohrabnezhad, S. (2011). Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 228–235. https://doi.org/10.1016/j.saa.2011.05.109
Sohrabnezhad, S., Pourahmad, A., Rakhshaee, R., Radaee, A., & Heidarian, S. (2010). Catalytic reduction of methylene blue by sulfide ions in the presence of nanoAlMCM-41 material. Superlattices and Microstructures, 47(3), 411–421. https://doi.org/10.1016/j.spmi.2009.12.006
Su, S., Liu, Y., Liu, X., Jin, W., & Zhao, Y. (2019). Transformation pathway and degradation mechanism of methylene blue through ?-FeOOH@GO catalyzed photo-Fenton-like system. Chemosphere, 218, 83–92. https://doi.org/10.1016/j.chemosphere.2018.11.098
Susanti, I., Iqbal, R. M., Rachman, R. A., & Pradana, T. A. (2021). Photocatalytic Activity and Kinetic Study of Methylene Blue Degradation using N-Doped TiO2 with Zeolite-NaY. CHEESA: Chemical Engineering Research Articles, 4(2), 75. https://doi.org/10.25273/cheesa.v4i2.7646.75-81
Vossoughi, M., Ghanbari, F., Simchi, A., & Shidpour, R. (2014). Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: Effect of the morphology and annealing temperature. Applied Catalysis A: General, 472, 198–204. https://doi.org/10.1016/j.apcata.2013.12.003
Wang, Q., Tian, S., & Ning, P. (2014). Degradation mechanism of methylene blue in a heterogeneous fenton-like reaction catalyzed by ferrocene. Industrial and Engineering Chemistry Research, 53(2), 643–649. https://doi.org/10.1021/ie403402q
Wicaksono, W. P., Sahroni, I., Saba, A. K., Rahman, R., & Fatimah, I. (2020). Biofabricated SnO2nanoparticles using Red Spinach (Amaranthus tricolor L.) extract and the study on photocatalytic and electrochemical sensing activity. Materials Research Express, 7(7). https://doi.org/10.1088/2053-1591/aba55b
Zhang, D., Chen, J., Xiang, Q., Li, Y., Liu, M., & Liao, Y. (2019). Transition-Metal-Ion (Fe, Co, Cr, Mn, Etc.) Doping of TiO2 Nanotubes: A General Approach. Inorganic Chemistry, 58(19), 12511–12515. https://doi.org/10.1021/acs.inorgchem.9b01889
Zuhaela, I. A., Cahyani, M. R., Saraswati, T. E., Kusumandari, K., Anwar, M., Suselo, Y. H., Ismayenti, L., & Rahardjo, S. B. (2021). The chemical kinetics studies of methylene blue degradation treated in dielectric barrier discharge (DBD) plasma with and without TiO2 photocatalyst. Journal of Physics: Conference Series, 1912(1). https://doi.org/10.1088/1742-6596/1912/1/012009
Zul, M., Su, S., Ekmi, N., & Mansor, N. (2020). Photocatalytic degradation and adsorption of phenol by solvent- controlled TiO 2 nanosheets assisted with H 2 O 2 and FeCl 3 : Kinetic , isotherm and thermodynamic analysis. 308. https://doi.org/10.1016/j.molliq.2020.112941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Linda Jati Kusumawardani, Tutik Widdyanti, Ani Iryani, Uswatun Hasanah, Nurlela Nurlela

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.