Review: Effect of Material Characteristics, and Process Conditions in Reducing Gaseous Pollutants Using Fly Ash (FA)-Based Adsorbent
DOI:
https://doi.org/10.31938/jsn.v14i4.749Keywords:
Adsorbent, adsorption, CO2 , fly ash, SOxAbstract
The intensive use of fossil fuels has led to a significant increase in air pollution, which negatively affects human health and the environment. Fly ash (FA), a byproduct of coal combustion, has great potential as an adsorbent for hazardous gas pollutants due to its physical and chemical properties. This research aims to evaluate the effectiveness of fly ash as an adsorbent in reducing gas pollutants such as CO2, SO2, and NO2, as well as to examine the influence of temperature and material characteristics on adsorption capacity. The results indicate that the maximum adsorption capacity for each gas pollutant is achieved at different temperatures, fly ash demonstrating the highest performance at 150 °C for CO2 adsorption, achieving an efficiency of 94.7%. For SO2 and NO2, the optimum temperatures are 200 °C, with efficiencies of 72.17% and 100%, respectively. This study also emphasizes the importance of selecting the appropriate characteristics of the adsorbent material to enhance adsorption efficiency. This finding has the potential to support the development of more efficient and sustainable air pollution reduction technologies in the future, by utilizing industrial waste such as fly ash as an innovative solution.
Downloads
References
Adawiah, S. R., Sutarno, & Suyanta. (2020). Adsorption-Desorption Studies of Phosphate on CTAB Modified Bentonite . Indonesian Journal of Chemical Research, 8(2), 125–136.
https://doi.org/10.30598/ijcr.2020.8-sra
Ahmed, F., Ali, I., Kousar, S., & Ahmed, S. (2022). The Environmental Impact of Industrialization and Foreign Direct Investment: Empirical Evidence from Asia-Pacific Region. Environmental Science and Pollution Research International, 29(20), 29778–29792.
https://doi.org/10.1007/s11356-021-17560-w
Akbar, R. Z. (2023). Analisis Tingkat Pencemaran Udara Kendaraan Bermotor di Area Parkir Selatan Universitas Muhammadiyah Yogyakarta. Media Ilmiah Teknik Lingkungan, 8(1), 25–33.
https://doi.org/10.33084/mitl.v8i1.4680
Aslam, Z., Shawabkeh, R. A., Hussein, I. A., Al-baghli, N., & Eic, M. (2015). Synthesis of Activated Carbon from Oil Fly Ash for Removal of H2S from Gas Stream. Applied Surface Science, 327, 107–115. https://doi.org/10.1016/j.apsusc.2014.11.152
Balcom, P., Cabrera, J. M., & Carey, V. P. (2021). Extended Energy Sustainability Analysis Comparing Environmental Impacts of Disposal Methods for Waste Plastic Roof Tiles in Uganda. Development Engineering, 6(100068), 1–18.
https://doi.org/10.1016/j.deveng.2021.100068
Bandura, L., Panek, R., Rotko, M., & Franus, W. (2016). Synthetic Zeolites from Fly Ash for an Effective Trapping of BTX in Gas Stream. Microporous and Mesoporous Materials, 223, 1–9.
https://doi.org/10.1016/j.micromeso.2015.10.032
Cwirzen, A. (2020). 10 - Properties of SCC with Industrial By-Products as Aggregates. In Self-Compacting Concrete: Materials, Properties, and Applications (pp. 249–281).
https://doi.org/10.1016/B978-0-12-817369-5.00010-6
El Morabet, R. (2019). Effects of Outdoor Air Pollution on Human Health. In Encyclopedia of Environmental Health (pp. 278–286).
https://doi.org/10.1016/B978-0-12-409548-9.11509-X
Faradilla, A. R., Yulinawati, H., & Suswantoro, E. (2016). Pemanfaatan Fly Ash sebagai Adsorben Karbon Monoksida dan Karbon Dioksida pada Emisi Kendaraan Bermotor. Seminar Nasional Cendekiawan, 1–8.
https://doi.org/10.25105/semnas.v0i0.874
Hamal, P., Subasinghege Don, V., Nguyenhuu, H., Ranasinghe, J. C., Nauman, J. A., McCarley, R. L., Kumar, R., & Haber, L. H. (2021). Influence of Temperature on Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy. The Journal of Physical Chemistry B, 125(37), 10506–10513.
https://doi.org/10.1021/acs.jpcb.1c04263
Haspiadi, H., Fitriani, F., & Budiarja, Y. (2021). Pengaruh Aktivasi Kimia terhadap Adsorben Fly Ash Batubara untuk Penyerap Polutan Emisi Gas Buang. Jurnal Riset Teknologi Industri, 15(1), 65.
https://doi.org/10.26578/jrti.v15i1.6880
He, J., Chen, K., Xu, J., Sun, Y., Xu, J., & Sun, Y. (2024). Urban Air Pollution and Control. In M. A. B. T.-E. of S. T. (Second E. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 143–159).
https://doi.org/10.1016/B978-0-323-90386-8.00009-7
Ho, H. J., Iizuka, A., Shibata, E., & Ojumu, T. (2022). Circular Indirect Carbonation of Coal Fly Ash for Carbon Dioxide Capture and Utilization. Journal of Environmental Chemical Engineering, 10(5), 108269.
https://doi.org/10.1016/j.jece.2022.108269
Hou, Y., Chen, Y., He, X., Wang, F., Cai, Q., & Shen, B. (2024). Insights into the Adsorption of CO2, SO2 and NOx in Flue Gas by Carbon Materials : A Critical Review. Chemical Engineering Journal, 490, 151424.
https://doi.org/10.1016/j.cej.2024.151424
Hu, Q., Lan, R., He, L., Liu, H., & Pei, X. (2023). A Critical Review of Adsorption Isotherm Models for Aqueous Contaminants: Curve Characteristics, Site Energy Distribution and Common Controversies. Journal of Environmental Management, 329, 117104.
https://doi.org/10.1016/j.jenvman.2022.117104
Jha, B., & Singh, D. N. (2016). Applications of Fly Ash Zeolites : Case Studies. Advanced Structured Materials, 78, pp 191-202.
https://doi.org/10.1007/978-981-10-1404-8_7
Jin, Y., Xu, Q., Zheng, F., & Lu, J. (2023). Enhancement in CO2 Adsorption by Zeolite Synthesized from Co-Combustion Ash of Coal and Rice Husk Modified with Lithium Ion. Journal of the Energy Institute, 110, 101348.
https://doi.org/10.1016/j.joei.2023.101348
Kisiela, A. M., Czajka, K. M., Moro, W., Rybak, W., & Andryjowicz, C. (2016). Unburned Carbon from Lignite Fly Ash as an Adsorbent for SO2 Removal. Energy, 116, 1454–1463.
https://doi.org/10.1016/j.energy
.2016.02.143
Kováts, N., Hubai, K., Sainnokhoi, T. A., Eck-Varanka, B., Hoffer, A., Tóth, Á., Kakasi, B., & Teke, G. (2022). Ecotoxic Emissions Generated by Illegal Burning of Household Waste. Chemosphere, 298(134263), 1–7.
https://doi.org/10.1016/j.chemosphere.2022.134263
Labidi, A., Ren, H., Zhu, Q., Liang, X., Liang, J., Wang, H., Sial, A., Padervand, M., Lichtfouse, E., Rady, A., Allam, A. A., & Wang, C. (2024). Coal Fly Ash and Bottom Ash Low-Cost Feedstocks for CO2 Reduction Using the Adsorption and Catalysis Processes. Science of The Total Environment, 912, 169179.
https://doi.org/10.1016/j.scitotenv.2023.169179
Lee, J., Han, S. J., & Wee, J. H. (2014). Synthesis of Dry Sorbents for Carbon Dioxide Capture using Coal Fly Ash and Its Performance. Applied Energy, 131, 40–47.
https://doi.org/10.1016/j.apenergy.2014.06.009
Leroutier, M., & Quirion, P. (2022). Air Pollution and CO2 from Daily Mobility: Who Emits and Why? Evidence from Paris. Energy Economics, 109, 105941.
https://doi.org/10.1016/j.eneco.2022.105941
Mazzella, A., Errico, M., & Spiga, D. (2016). CO2 Uptake Capacity of Coal Fly Ash: Influence of Pressure and Temperature on Direct Gas - Solid Carbonation. Journal of Environmental Chemical Engineering, 4(4), 4120–4128.
https://doi.org/10.1016/j.jece.2016.09.020
Mekkadinah, Suwarno, S., Garniwa, I., & Agustina, H. (2020). Review Regulation on the Determination of Fly Ash and Bottom Ash from Coal Fired Power Plant as Hazardous Waste in Effort to Increase Utilization in Indonesia. IOP Conference Series: Earth and Environmental Science, 519(1), 12051.
https://doi.org/10.1088/1755-1315/519/1/012051
Muhammad, D., Berlianto, F., & Wijaya, R. S. (2022). Pengaruh Transisi Konsumsi Energi Fosil Menuju Energi Baru Terbarukan Terhadap Produk Domestik Bruto di Indonesia. Perspektif Ekonomi Dan Pembangunan Daerah, 11(2), 105–112.
https://doi.org/10.22437/pdpd.v11i2.17944
Muhtadi, A., Rohman, B. N., & Faristiana, A. R. (2023). Dampak Penggunaan Motor di Desa Mempengaruhi Perubahan Masyarakat & Lingkungan. TUTURAN: Jurnal Ilmu Komunikasi, Sosial Dan Humaniora, 1(3), 1–14.
https://doi.org/10.47861/tuturan.v1i3.260
Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L. A., Deng, H., Liu, J., Sun, C., Liu, H., & Snape, C. E. (2017). Fly Ash-Derived MCM-41 as a Low-Cost Silica Support for Polyethyleneimine in Post-Combustion CO2 Capture. Journal of CO2 Utilization, 22, 81–90.
https://doi.org/10.1016/j.jcou.2017.09.015
Pathak, G., Nichter, M., Hardon, A., Moyer, E., Latkar, A., Simbaya, J., Pakasi, D., Taqueban, E., & Love, J. (2023). Plastic Pollution and the Open Burning of Plastic Wastes. Global Environmental Change, 80(2), 102648.
https://doi.org/10.1016/j.gloenvcha.2023.102648
Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Chapter 1 - Fundamentals of Adsorption Technology. In Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 1–70).
https://doi.org/10.1016/B978-0-12-818805-7.00001-1
Shu, Y., Wei, X., Fang, Y., Lan, B., & Chen, H. (2015). Removal of Sulfuric Acid Mist from Lead-Acid Battery Plants by Coal Fly Ash-Based Sorbents. Journal of Hazardous Materials, 286, 517–524.
https://doi.org/10.1016/j.jhazmat.2015.01.014
Siriruang, C., Toochinda, P., Julnipitawong, P., & Tangtermsirikul, S. (2016). CO2 Capture using Fly Ash from Coal Fired Power Plant and Applications of CO2-Captured Fly Ash as a Mineral Admixture for Concrete. Journal of Environmental Management, 170, 70–78.
https://doi.org/10.1016/j.jenvman.2016.01.010
Tsiotsias, A. I., Georgiadis, A. G., Charisiou, N. D., Hussien, A. G. S., Dabbawala, A. A., Polychronopoulou, K., & Goula, M. A. (2024). Mid-Temperature CO2 Adsorption over Different Alkaline Sorbents Dispersed over Mesoporous Al2O3. ACS Omega, 9(10), 11305–11320.
https://doi.org/10.1021/acsomega.3c07204
Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). 21 - Environmental Pollution: Causes, Effects, and the Remedies. In Microorganisms for Sustainable Environment and Health (pp. 419–429).
https://doi.org/10.1016/B978-0-12-819001-2.00021-8
Velis, C. A., & Cook, E. (2021). Mismanagement of Plastic Waste through Open Burning with Emphasis on the Global South: A Systematic Review of Risks to Occupational and Public Health. Environmental Science and Technology, 55(11), 7186–7207.
https://doi.org/10.1021/acs.est.0c08536
Viola, V. O., Aquino, T. F. d., Estevam, S. T., Bonetti, B., Riella, H. G., Soares, C., & Padoin, N. (2023). Synthesis and Application of Two Types of Amine Sorbents Impregnated on Silica from Coal Fly Ash for CO2 Capture. Results in Engineering, 20(101596), 1–11.
https://doi.org/10.1016/j.rineng.2023.101596
Wang, C., Xu, G., Gu, X., Gao, Y., & Zhao, P. (2021). High Value-Added Applications of Coal Fly Ash in the Form of Porous Materials : A Review. Ceramics International, 47(16), 22302–22315.
https://doi.org/10.1016/j.ceramint.2021.05.070
Wen, W., Wen, C., Wang, D., Zhu, G., Yu, J., Ling, P., Xu, M., & Liu, T. (2024). A Review on Activated Coke for Removing Flue Gas Pollutants (SO2, NOx, HgO, and VOCs): Preparation, Activation, Modification, and Engineering Applications. Journal of Environmental Chemical Engineering, 12(2), 111964.
https://doi.org/10.1016/j.jece.2024.111964
Yana, S., Nelly, Ibrahim, N., Zubir, A. A., Zulfikar, T. M., & Yulisma, A. (2022). Dampak Ekspansi Biomassa sebagai Energi Terbarukan : Kasus Energi Terbarukan Indonesia. Jurnal Serambi Engineering, 7(4), 4036–4050.
https://doi.org/10.32672/jse.v7i4.4963
Yousef, R., Qiblawey, H., & El-Naas, M. H. (2020). Adsorption as a Process for Produced Water Treatment : A Review. Process, 8(1657), 1–22.
https://doi.org/10.3390/pr8121657
Yudiartono, Windarta, J., & Adiarso. (2022). Analisis Prakiraan Kebutuhan Energi Nasional Jangka Panjang untuk Mendukung Program Peta Jalan Transisi Energi Menuju Karbon Netral. JEBT: Jurnal Energi Baru & Terbarukan, 3(3), 201–217.
https://doi.org/10.14710/jebt.2022.14264
Zhao, X., & Yin, Y. (2024). Hazards of pollutants and Ventilation Control Strategy in Industrial Workshops: Current State and Future Trend. Building and Environment, 251, 111229.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Budi Setya Wardhana, Farrah Fadhillah Hanum, Zahrul Mufrodi, Siti Jamilatun
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.