Synthesis of Iron Nanoparticle Using Polyphenol Bioreductor from Red Pomegranate Extract
DOI:
https://doi.org/10.31938/jsn.v14i3.719Keywords:
Dissolved organic matter, Iron nanoparticle, Polyphenol, Pomegranate peelAbstract
Nano zero valent iron (nZVI) has been utilized for environmental remediation and raw water treatment. The NaBH4 reductor, utilized in iron nanoparticle synthesis, yielded easily oxidized and agglomerated material. Using polyphenol as a bioreductor resulted in a more stable material. The purpose of this research is to synthesize and compare quality of nZVI utilizing NaBH4 (C-nZVI) to nZVI utilizing polyphenol from spent tea and the peel of pomegranate (G-nZVI) and determine the efficiency of pomegranate peel G-nZVI in reducing dissolved organic matter. The iron nanoparticle was synthesized by reducing FeCl3 salt in a water solvent. C-nZVI material was generated as a black powder, whereas G-nZVI materials were black flakes. The band gap energy values of these three materials indicate that they have reached the nanoscale. All three materials had entire nZVI unitary groups based on its FTIR spectrums. The X-ray diffractogram did not clearly show the core of the phase crystals. The G-nZVI from the peel of pomegranate had a greater distribution and mean material size than the spent tea G-nZVI. Both zeta potentials G-nZVI demonstrate that the materials were stable in the aqueous medium. After two hours of incubation, G-nZVI pomegranate peel at room temperature and dark conditions achieved an optimal dissolved organic matter breakdown rate of 98%.
Downloads
References
Abdelfatah, A. M., Fawzy, M., Eltaweil, A. S., & El-Khouly, M. E. (2021). Green synthesis of nano-zero-valent iron using Ricinus Communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS Omega, 6(39), 25397–25411. https://doi.org/10.1021/acsomega.1c03355
Akhtar, M. S., Panwar, J., & Yun, Y.-S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1(6), 591–602. https://doi.org/10.1021/sc300118u
Al Kindi, G. Y., Hassan, A. K., Yahya, D. G., & Alhaidri, H. A. (2021). The nanoparticles zero-valent synthesis by black tea extract to remove rb 238 using synthetic and natural wastewater by packed bed reactor. IOP Conference Series: Earth and Environmental Science, 779(1), 1–12. https://doi.org/10.1088/1755-1315/779/1/012092
Aneklaphakij, C., Saigo, T., Watanabe, M., Naake, T., Fernie, A. R., Bunsupa, S., Satitpatipan, V., & Tohge, T. (2021). Diversity of chemical structures and biosynthesis of polyphenols in nut-bearing species. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.642581
Ansari, A., Siddiqui, V. U., Akram, Md. K., Siddiqi, W. A., Khan, A., Al-Romaizan, A. N., Hussein, M. A., & Puttegowda, M. (2021). Synthesis of atmospherically stable zero-valent iron nanoparticles (nZVI) for the efficient catalytic treatment of high-strength domestic wastewater. Catalysts, 12(1), 26. https://doi.org/10.3390/catal12010026
Ardakani, L. S., Alimardani, V., Tamaddon, A. M., Amani, A. M., & Taghizadeh, S. (2021). Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties. Heliyon, 7(2), 1–9. https://doi.org/10.1016/j.heliyon.2021.e06159
Azizi, A., Abouseoud, M., & Amrane, A. (2017). Phenol removal by a sequential combined fenton-enzymatic process. Nature Environment and Pollution Technology, 16(1), 321–330.
Bagbi, Y., Sarswat, A., Tiwari, S., Mohan, D., Pandey, A., & Solanki, P. R. (2017). Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. Environmental Nanotechnology, Monitoring & Management, 7, 34–45. https://doi.org/10.1016/j.enmm.2016.11.008
Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A
Bajpai, S. K., & Jain, A. (2010). Removal of copper(II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. Water SA, 36(3), 221–228.
[BPS] Badan Pusat Statistik. (2021). Produksi Teh Nasional Meningkat 20,3% pada 2021. https://databoks.katadata.co.id/datapublish/2022/04/04/produksi-teh-nasional-meningkat-203-pada-2021
Brza, M. A., Aziz, S. B., Anuar, H., Ali, F., Dannoun, E. M. A., Mohammed, S. J., Abdulwahid, R. T., & Al-Zangana, S. (2020). Tea from the drinking to the synthesis of metal complexes and fabrication of PVA based polymer composites with controlled optical band gap. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-75138-x
Budi, S., Yusmaniar, Afida, I., Anugerah, Y. D., & Mahmud, A. (2019). Green preparation of nanoscale zero-valent iron using clove extracts as adsorbent for lead removal. Journal of Physics: Conference Series, 1153, 1–6. https://doi.org/10.1088/1742-6596/1153/1/012077
Çam, M., & ?çyer, N. C. (2015). Phenolics of pomegranate peels: Extraction optimization by central composite design and alpha glucosidase inhibition potentials. Journal of Food Science and Technology, 52(3), 1489–1497. https://doi.org/10.1007/s13197-013-1148-y
Chen, Q., Ma, C., Duan, W., Lang, D., & Pan, B. (2020). Coupling adsorption and degradation in p-nitrophenol removal by biochars. Journal of Cleaner Production, 271, 1–9. https://doi.org/10.1016/j.jclepro.2020.122550
Clayton, G. E., Thorn, R. M. S., & Reynolds, D. M. (2019). Comparison of trihalomethane formation using chlorine-based disinfectants within a model system; Applications within point-of-use drinking water treatment. Frontiers in Environmental Science, 7, 1–13. https://doi.org/10.3389/fenvs.2019.00035
Curcio, G. M., Limonti, C., Siciliano, A., & Kabda?l?, I. (2022). Nitrate removal by zero-valent metals: A comprehensive review. Sustainability, 14(8), 1–36. https://doi.org/10.3390/su14084500
Daniyati, R., Zharvan, V., Ichsan, N., Hadi Pramono, Y., & Yudoyono, G. (2015). Penentuan energi celah pita optik film TiO2 menggunakan metode tauc plot. Prosiding Seminar Sains dan Teknologi , 1–5.
Darwish, E. R., Moalla, S. M. N., Hosny, N. M., Amin, A. S., Martin, H. B., & Kalil, H. (2021). Fast and reliable determination of organic compounds in washing water samples using electrochemical-based measurements of chemical oxygen demand. LUME, 10(5), 235–240.
Eddy, D. R., Nursyamsiah, D., Permana, M. D., Solihudin, Noviyanti, A. R., & Rahayu, I. (2022). Green production of zero-valent iron (ZVI) using tea-leaf extracts for fenton degradation of mixed rhodamine b and methyl orange dyes. Materials, 15(1), 1–14. https://doi.org/10.3390/ma15010332
Erkan, M., & Dogan, A. (2018). Pomegranate/roma— Punica granatum. Dalam Exotic Fruits (hlm. 355–361). Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00049-6
Febriana, E., Tamrin, T. R., & Faradillah, F. (2021). Analisis kadar polifenol dan aktivitas antioksidan yang terdapat pada ekstrak buah : Studi kepustakaan. Edible: Jurnal Penelitian Ilmu-ilmu Teknologi Pangan, 8(1), 1–11. https://doi.org/10.32502/jedb.v8i1.3446
Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., & Vilas-Vilela, J. L. (2020). Zero-valent iron nanoparticles for soil and groundwater remediation. International Journal of Environmental Research and Public Health, 17(16), 1–22. https://doi.org/10.3390/ijerph17165817
Gopal, G., KVG, R., M, S., J, L. A. A., Chandrasekaran, N., & Mukherjee, A. (2020). Green synthesized Fe/Pd and in-situ Bentonite-Fe/Pd composite for efficient tetracycline removal. Journal of Environmental Chemical Engineering, 8(5), 1–11. https://doi.org/10.1016/j.jece.2020.104126
Hamzah, F., & Manaf, A. A. A. (2019). The significance of ‘Nila’ in malay foundation myths: A study of sri nila pahlawan. Journal of Visual Art and Design, 11(2), 105–118. https://doi.org/10.5614/j.vad.2019.11.2.3
Hamzezadeh, A., Fazlzadeh, M., Rahmani, K., & Poureshgh, Y. (2021). A novel green synthesis of zero valent iron nanoparticles (nZVI) using walnut green skin: Characterisation, catalytic degradation and toxicity studies. International Journal of Environmental Analytical Chemistry, 103(18), 1–17. https://doi.org/10.1080/03067319.2021.1957463
Jeyasundari, J., Praba, P. S., Jacob, A. B. Y., Vasantha, V. S., & Shanmugaiah, V. (2017). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Psidium Guajava plant and their antibacterial activity. Chem Sci Rev Lett, 6(22), 1244` – 1252.
Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, 137, 1–11. https://doi.org/10.1016/j.cep.2019.01.006
Karam, A., Zaher, K., & Mahmoud, A. S. (2020). Comparative studies of using nano zerovalent iron, activated carbon, and green synthesized nano zerovalent iron for textile wastewater color removal using artificial intelligence, regression analysis, adsorption isotherm, and kinetic studies. Air, Soil and Water Research, 13, 1–19. https://doi.org/10.1177/1178622120908273
Karthika, S., Lakshmanan, A., & Rajkishore, S. K. (2019). The green synthesis and characterization of zero valent iron nanoparticles using azolla and blue green algal systems. International Journal of Agricultural Science and Research (IJASR), 9(4), 1–8.
[Kemenkes RI] Kementrian Kesehatan Republik Indonesia. (2017). Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017.
Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5(8), 1–35. https://doi.org/10.1039/c2ee21818f
Kodikara, J., Gunawardana, B., Jayaweera, M., Sudasinghe, M., & Manatunge, J. (2020). Nitrate removal in potable groundwater by nano zerovalent iron under oxic conditions. Water Practice and Technology, 15(4), 1126–1143. https://doi.org/10.2166/wpt.2020.086
Kokabi, M., & Nejad Ebrahimi, S. (2020). Polyphenol enriched extract of pomegranate peel; A novel precursor for the biosynthesis of zinc oxide nanoparticles and application in sunscreens. Pharmaceutical Sciences, 27(1), 102–110. https://doi.org/10.34172/PS.2020.56
Litter, M. I., & Slodowicz, M. (2017). An overview on heterogeneous fenton and photofenton reactions using zerovalent iron materials. Journal of Advanced Oxidation Technologies, 20(1), 1–19. https://doi.org/10.1515/jaots-2016-0164
Liu, A., Liu, J., Han, J., & Zhang, W. (2017). Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. Journal of Hazardous Materials, 322, 129–135. https://doi.org/10.1016/j.jhazmat.2015.12.070
Lu, P., Wang, X., Tang, Y., Ding, A., Yang, H., Guo, J., Cui, Y., & Ling, C. (2020). Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: Strengthening effect and mechanisms. Environment International, 138, 1–10. https://doi.org/10.1016/j.envint.2020.105675
Luis Aleixandre-Tudo, J., & du Toit, W. (2019). The role of uv-visible spectroscopy for phenolic compounds quantification in winemaking. Dalam Frontiers and New Trends in the Science of Fermented Food and Beverages. IntechOpen. https://doi.org/10.5772/intechopen.79550
Machado, S., Pacheco, J. G., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2015). Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of The Total Environment, 533, 76–81. https://doi.org/10.1016/j.scitotenv.2015.06.091
Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of The Total Environment, 445–446, 1–8. https://doi.org/10.1016/j.scitotenv.2012.12.033
Mahmoud, A. S., Farag, R. S., & Elshfai, M. M. (2020). Reduction of organic matter from municipal wastewater at low cost using green synthesis nano iron extracted from black tea: Artificial intelligence with regression analysis. Egyptian Journal of Petroleum, 29(1), 9–20. https://doi.org/10.1016/j.ejpe.2019.09.001
Milani, G., Curci, F., Cavalluzzi, M. M., Crupi, P., Pisano, I., Lentini, G., Clodoveo, M. L., Franchini, C., & Corbo, F. (2020). Optimization of microwave-assisted extraction of antioxidants from bamboo shoots of phyllostachys pubescens. Molecules, 25(1), 1–11. https://doi.org/10.3390/molecules25010215
Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022
Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5
Pasinszki, T., & Krebsz, M. (2020). Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials, 10(5), 1–37. https://doi.org/10.3390/nano10050917
Prihatini, E., Ismail, R., Sekartining Rahayu, I., Dwi Laksono, G., & Khairunissa, D. (2024). Compatibility testing of synthesized TiO2 nanoparticles on the fast-growing wood physical properties. Jurnal Sains Natural, 14(2), 62–72. https://doi.org/10.31938/jsn.v14i2.611
Puthukkara, P. A. R., Jose T, S., & S, D. lal. (2021). Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. Journal of Environmental Chemical Engineering, 9(1), 1–77. https://doi.org/10.1016/j.jece.2020.104569
Ramadani, R., Samsunar, S., & Utami, M. (2021). Analisis suhu, derajat keasaman (pH), chemical oxygen demand (COD), dan biologycal oxygen demand (BOD) dalam air limbah domestik di dinas lingkungan hidup Sukoharjo. Indonesian Journal of Chemical Research, 6(1), 12–22. https://doi.org/10.20885/ijcr.vol6.iss1.art2
Salmani, M. H., Abedi, M., Mozaffari, S. A., Mahvi, A. H., Sheibani, A., & Jalili, M. (2021). Simultaneous reduction and adsorption of arsenite anions by green synthesis of iron nanoparticles using pomegranate peel extract. Journal of Environmental Health Science and Engineering, 19(1), 603–612. https://doi.org/10.1007/s40201-021-00631-y
Sangalang, R. H. (2022). Nanotechnology for clean and safe water: (A review). Oriental Journal Of Chemistry, 38(2), 227–237. https://doi.org/10.13005/ojc/380202
Sari, D. N., Amelia, D., Ramadhon, M. D., & Tiandho, Y. (2022). Utilization of iron scrap for palm oil mill effluent treatment by fenton and foto-fenton processes. Jurnal Sains Natural, 12(2), 73. https://doi.org/10.31938/jsn.v12i2.341
Sharma, A., Ahmad, J., & Flora, S. J. S. (2018). Application of advanced oxidation processes and toxicity assessment of transformation products. Environmental Research, 167, 223–233. https://doi.org/10.1016/j.envres.2018.07.010
Shen, J., Lu, Y., Liu, J.-K., & Yang, X.-H. (2016). Photocatalytic activity of silver chromate materials by various synthesis methods. Journal of Experimental Nanoscience, 11(8), 650–659. https://doi.org/10.1080/17458080.2015.1110624
Šimkovi?, K., Derco, J., & Vali?ková, M. (2015). Removal of selected pesticides by nano zero-valent iron. Acta Chimica Slovaca, 8(2), 152–155. https://doi.org/10.1515/acs-2015-0026
Singh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science, 12(4), 470–475. https://doi.org/10.1080/16583655.2018.1473946
Solomon, E. T., Robele, S., Kloos, H., & Mengistie, B. (2020). Effect of household water treatment with chlorine on diarrhea among children under the age of five years in rural areas of Dire Dawa, eastern Ethiopia: a cluster randomized controlled trial. Infectious Diseases of Poverty, 9(64), 1–13. https://doi.org/10.1186/s40249-020-00680-9
Spirenkova, V., Bik, Y. I., Papina, T. S., Noskova, T. V, Roshchina, E. V, Tushina, A. S., & Modina, M. A. (2021). Advanced treatment of drinking water from chlorine by-products in water transport and stationary facilities. IOP Conference Series: Earth and Environmental Science, 867(1), 1–5. https://doi.org/10.1088/1755-1315/867/1/012051
Sulungbudi, G. T., Mujamilah, & Handayani, A. (2012). Sintesis nanopartikel magnetik core/shell Fe/ oksida Fe dengan metode reduksi kimia. Jurnal Sains Materi Indonesia Indonesian , 13(3), 182–187.
Tarekegn, M. M., Hiruy, A. M., & Dekebo, A. H. (2021). Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+ , Cu2+ and Pb2+ ) from aqueous solutions. RSC Advances, 11(30), 18539–18551. https://doi.org/10.1039/D1RA01427G
Tsitsifli, S., & Kanakoudis, V. (2018). Disinfection impacts to drinking water safety—A review. EWaS3 2018, 603. https://doi.org/10.3390/proceedings2110603
Tugiyanti, E., Susanti, E., & Hari Sulis, I. (2018). Effect of tea dregs form and different fermentation process on the nutrient, tannin, saponin, flavonoid content and antioxidant activity. Pakistan Journal of Nutrition, 18(1), 25–33. https://doi.org/10.3923/pjn.2019.25.33
USEPA [United States Environmental Protection Agency]. (1993). Method 410.4, Revision 2.0: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry.
Utami, A. R., & Wulandari, N. K. C. (2020). Verifikasi metode pengujian total organic carbon (TOC) dalam air limbah kegiatan minyak dan gas dengan menggunakan TOC analyzer. Prosiding Seminar Nasional Kimia (SNK) 2020, 258–267.
Venkitasamy, C., Zhao, L., Zhang, R., & Pan, Z. (2019). Pomegranate. Dalam Integrated Processing Technologies for Food and Agricultural By-Products (hlm. 181–216). Elsevier. https://doi.org/10.1016/B978-0-12-814138-0.00008-3
Vijaya, G. K. (2020). Colour, wavelength and turbidity in the light of Goethe’s colour studies. Journal for General Philosophy of Science, 51(4), 569–594. https://doi.org/10.1007/s10838-020-09517-3
Wang, X., Wang, A., Ma, J., & Fu, M. (2017). Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes. Chemosphere, 166, 80–88. https://doi.org/10.1016/j.chemosphere.2016.09.056
Widyaningrum, N., & Lestari, S. (2017). Antibacterial activity of the dregs of green tea leaves (Camellia sinensis L.) on staphylococcus epidermidis as causes of acne. Journal of Science and Science Education, 1(2), 1–5.
Wu, C., Tu, J., Liu, W., Zhang, J., Chu, S., Lu, G., Lin, Z., & Dang, Z. (2017). The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe 0. Environmental Science: Nano, 4(7), 1544–1552. https://doi.org/10.1039/C7EN00240H
Wu, S., Yu, L., & Li, M. (2021). Preparation of nanoscale zero-valent iron and its application in coking wastewater treatment. IOP Conference Series: Earth and Environmental Science, 687(1), 1–5. https://doi.org/10.1088/1755-1315/687/1/012052
Yashin, A. Y., Nemzer, B. V., Combet, E., & Yashin, Y. I. (2015). Determination of the chemical composition of tea by chromatographic methods: A Review. Journal of Food Research, 4(3), 56–88. https://doi.org/10.5539/jfr.v4n3p56
Yogaswara, R. B., & Moesriati, A. (2021). Identifikasi kendala proses produksi instalasi pengolahan air minum menggunakan failure mode and effect analysis (FMEA) (Studi Kasus: PDAM Tirta Cahya Agung Kabupaten Tulungagung). Jurnal Teknik ITS, 10(2), 55–61.
Yu, C., Zhang, D., Dong, X., & Lin, Q. (2018). Pyrolytic behavior of a zero-valent iron biochar composite and its Cu(II) removal mechanism. RSC Advances, 8(59), 34151–34160. https://doi.org/10.1039/C8RA05676E
Zhang, Q., Zhao, D., Feng, S., Wang, Y., Jin, J., Alsaedi, A., Hayat, T., & Chen, C. (2019). Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction. Journal of Colloid and Interface Science, 552, 735–743. https://doi.org/10.1016/j.jcis.2019.05.109
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hafizh, Dr. Sri Sugiarti, Dr. Charlena
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution - You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.