Optimization and Characterization Cellulose Content of Cocoa Pod Husk from Cocoa Fermentation Center in Gunung Kidul Regency, Indonesia Through The Extraction Process

Optimization and Characterization Cellulose Content of Cocoa Pod Husk from Cocoa Fermentation Center in Gunung Kidul Regency, Indonesia Through The Extraction Process


  • Nafira Alfi Zaini Amrillah Universitas Ahmad Dahlan
  • Farrah Fadhillah Hanum Universitas Ahmad Dahlan
  • Aster Rahayu Universitas Ahmad Dahlan
  • Alliya BalqisViratu Hapsari Universitas Ahmad Dahlan
  • Nuraini Universitas Ahmad Dahlan




cellulose, cocoa pod husk, optimization, extraction, characterization


Lignocellulose comprises three biopolymers, cellulose, hemicellulose, and lignin that form a complex composite structure. Cellulose, as a biopolymer possesses notable properties including biocompatibility, biodegradability and economic viability. Gunung Kidul, one of the areas in Indonesia, precisely in Yogyakarta, where the population is known to live as cocoa farmers, so the potential for cocoa husks production is quite large. One way to obtain cellulose is by extracting the cacao husks from Gunung Kidul Cocoa Fermentation Center. Cellulose extraction were carried out through two main stages: alkaline delignification and bleaching. Based on the FTIR characterization results, the cocoa skins from Gunung Kidul Fermentation Center have the potential to separate cellulose from lignin and hemicellulose, which is shown in the presence of the function groups O-H, CH2, and C=O. So, the study aimed to get the optimum condition of the cellulose through several variations of the alkaline (NaOH and KOH), and the type of bleaching reagent (NaOCl and H2O2). The concentration of H2O2 (10%, 20%, 30% and 40%). The potential for cellulose can be developed and modified into nanocellulose in the future perspective.


Download data is not yet available.


Akinjokun, A. I., Petrik, L. F., Ogunfowokan, A. O., Ajao, J., & Ojumu, T. V. (2021). Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes. Heliyon, 7(4), e06680. https://doi.org/10.1016/j.heliyon.2021.e06680

Amrillah, Z., Hanum, F. F., & Rahayu, A. (2022). Studi Efektivitas Metode Ekstraksi Selulosa dari Agricultural Waste. Seminar Nasional Penelitian LPPM UMJ, 8.

Asmoro, N. W., Afriyanti, A., & Ismawati, I. (2018). Ekstraksi Selulosa Batang Tanaman Jagung (Zea Mays) Metode Basa. Jurnal Ilmiah Teknosains, 4(1), 24–28. https://doi.org/10.26877/jitek.v4i1.1710

Bacha, E. G., & Demsash, H. D. (2021). Extraction and Characterization of Nanocellulose from Eragrostis Teff Straw. Journal of Cellulose.

Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011(1), 1–17. https://doi.org/10.4061/2011/787532

Chesson, A. (1981). Effects of sodium hydroxide on cereal straws about the enhanced degradation of structural polysaccharides by rumen microorganisms. Journal of the Science of Food and Agriculture, 32(8), 745–758. https://doi.org/10.1002/jsfa.2740320802

Cruz, G. (2012). Production of Activated Carbon from Cocoa (Theobroma cacao) Pod Husk. Journal of Civil & Environmental Engineering, 02(02). https://doi.org/10.4172/2165-784x.1000109

Daud, Z., Kassim, A. S. M., Aripin, A. M., Awang, H., & Hatta, M. Z. M. (2013). Chemical Composition and Morphological of Cocoa Pod Husks and Cassava Peels for Pulp and Paper Production. Australian Journal of Basic and Applied Sciences, 7(9), 406–411.

Directorate General of Estates. (2019). TREE CROP ESTATE STATISTICS OF INDONESIA 2018-2020. 1–58. www.ditjenbun.pertanian.go.id

Fitriana, N. E., Suwanto, A., Jatmiko, T. H., Mursiti, S., & Prasetyo, D. J. (2020). Cellulose extraction from sugar palm (Arenga pinnata) fibre by alkaline and peroxide treatments. IOP Conference Series: Earth and Environmental Science, 462(1). https://doi.org/10.1088/1755-1315/462/1/012053

Geng, W., Venditti, R. A., Pawlak, J. J., & Chang, H. M. (2019). Effect of delignification on hemicellulose extraction from switchgrass, poplar, and pine and its effect on enzymatic convertibility of Cellulose-rich Residues. BioResources, 13(3), 4946–4963. https://doi.org/10.15376/biores.13.3.4946-4963

Hanum, F. F., Rahayu, A., Amrillah, N. A. Z., & Yoga Nawaki Helmi Mustafa. (2023). Utilization and Extraction Method of Nanocellulose: A Review. Jurnal Sains Natural, 13(3), 107–114. https://doi.org/10.31938/jsn.v13i3.565

Hutomo, G. S., Marseno, D. W., Anggrahini, S., & Supriyanto. (2012). Ekstraksi Selulosa dari Pod Husk Kakao Menggunakan Sodium Hidroksida. Agritech, 32(3), 223–229.

Jonasson, S., Bünder, A., Berglund, L., Hertzberg, M., Niittylä, T., & Oksman, K. (2021). The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall. Nanomaterials, 11, 1–13.

Jufrinaldi, J. (2018). Isolasi Selulosa Dari Bagas Tebu Melalui Pemanasan Iradiasi Gelombang Mikro. Jurnal Ilmiah Teknik Kimia, 2(2), 83. https://doi.org/10.32493/jitk.v2i2.1683

Lismeri, L., Darni, Y., Sanjaya, M. D., & Immadudin, M. I. (2019). Effect of Temperature and Time on Alkali Pretreatment of Cellulose Isolation From Banana Stem Waste. Journal of Chemical Process Engineering, 4(1), 18–22. https://doi.org/10.33536/jcpe.v4i1.319

Macías-Almazán, A., Lois-Correa, J. A., Domínguez-Crespo, M. A., López-Oyama, A. B., Torres-Huerta, A. M., Brachetti-Sibaja, S. B., & Rodríguez-Salazar, A. E. (2020). Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust. Carbohydrate Polymers, 238(March), 116171. https://doi.org/10.1016/j.carbpol.2020.116171

Moniruzzaman, M., & Ono, T. (2013). Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresource Technology, 127, 132–137. https://doi.org/10.1016/j.biortech.2012.09.113

Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., Joung, I., Joo, K., Lee, J., & Im, W. (2019). CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320–331. https://doi.org/10.1093/glycob/cwz003

Rahayu, A., Hanum, F. F., Amrillah, N. A. Z., Lim, L. W., & Salamah, S. (2022). Cellulose Extraction from Coconut Coir with Alkaline Delignification Process. Journal of Fibers and Polymer Composites, 1(2), 106–116. https://doi.org/10.55043/jfpc.v1i2.51

Silitonga, N., Tarigan, N., & Saragih, G. (2019). Pengaruh Konsentrasi NaOH pada Karakteristik ?-Selulosa dari Pelepah Kelapa Sawit. Jurnal Ready Star, 2(1), 103–108.

Singh, A., Ranawat, B., & Meena, R. (2019). Extraction and characterization of cellulose from halophytes: next generation source of cellulose fiber. SN Applied Sciences, 1(11), 1–10. https://doi.org/10.1007/s42452-019-1160-6

Smith, M. D. (2019). An Abbreviated Historical and Structural Introduction to Lignocellulose [Chapter]. ACS Symposium Series, 1338, 1–15. https://doi.org/10.1021/bk-2019-1338.ch001

Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

Thakur, V., Guleria, A., Kumar, S., Sharma, S., & Singh, K. (2021). Recent advances in nanocellulose processing, functionalization and applications: A review. Materials Advances, 2(6), 1872–1895. https://doi.org/10.1039/d1ma00049g

Tibolla, H., Pelissari, F. M., & Menegalli, F. C. (2014). Cellulose nanofibers are produced from banana peel by chemical and enzymatic treatment. Lwt, 59(2P2), 1311–1318. https://doi.org/10.1016/j.lwt.2014.04.011

Vermaas, J. V., Dellon, L. D., Broadbelt, L. J., Beckham, G. T., & Crowley, M. F. (2019). Automated Transformation of Lignin Topologies into Atomic Structures with LigninBuilder. ACS Sustainable Chemistry and Engineering, 7(3), 3443–3453. https://doi.org/10.1021/acssuschemeng.8b05665

Zeronian, S. H., & Inglesby, M. K. (1995). Bleaching of cellulose by hydrogen peroxide. Cellulose, 2(4), 265–272. https://doi.org/10.1007/BF00811817

Zhang, B. X., Azuma, J. I., & Uyama, H. (2015). Preparation and characterization of a transparent amorphous cellulose film. RSC Advances, 5(4), 2900–2907. https://doi.org/10.1039/c4ra14090g

Zhao, D., Yang, F., Dai, Y., Tao, F., Shen, Y., Duan, W., Zhou, X., Ma, H., Tang, L., & Li, J. (2017). Exploring crystalline structural variations of cellulose during pulp beating of tobacco stems. Carbohydrate Polymers, 174, 146–153. https://doi.org/10.1016/j.carbpol.2017.06.060

Zhu, Q., Zhou, R., Liu, J., & Sun, J. (2021). Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. Nanomaterials, 1–18.




How to Cite

Amrillah, N. A. Z., Hanum, F. F., Rahayu, A., BalqisViratu Hapsari, A., & Nuraini. (2024). Optimization and Characterization Cellulose Content of Cocoa Pod Husk from Cocoa Fermentation Center in Gunung Kidul Regency, Indonesia Through The Extraction Process. JURNAL SAINS NATURAL, 14(2), 81–90. https://doi.org/10.31938/jsn.v14i2.703