Performance Evaluation and Adsorption Isotherm of Activated Bottom Ash for Free Fatty Acid Removal

Performance Evaluation and Adsorption Isotherm of Activated Bottom Ash for Free Fatty Acid Removal

Authors

  • Novellia Ardiansyah
  • Anggia Afza Utami
  • Amelia Amir Universitas Bung Hatta
  • Maria Ulfah

DOI:

https://doi.org/10.31938/jsn.v15i3.843

Keywords:

Activated Bottom Ash, Adsorption, Adsorbent Performance, Free Fatty Acid, Isotherm Model

Abstract

Boiler bottom ash is one of the by-products produced from the combustion of palm shells and fiber in the boiler furnace at high temperature.  These were usually disposed of on the land around the palm mill, causing environmental problems. In this research, non-activated and activated bottom ash treated with phosphoric acid were used as an adsorbent for removing free fatty acids (FFA) from crude palm oil (CPO) recovery. This study had two parameters. The first parameter is an adsorbent activator concentration with the variation level of 0, 5, 10, and 15 %. The second parameter is contact time with four levels involved in this research. They were 1, 2, 3, and 4 hours. The bottom ash adsorbent with a 10% concentration of phosphoric acid and a 3-hour contact time had the highest efficiency and capacity in removing FFAs from CPO recovery. The lowering of water and impurity content in CPO recovery after the adsorption process was in the range of 0.05% to 0.22% and 0.01% to 0.04%, respectively. The isotherm model was evaluated using the Langmuir and the Freundlich. The Isotherm model was fitted to the Freundlich, and this indicated multilayer adsorption with R2 = 0.9869.

Downloads

Download data is not yet available.

References

Alhawtali, S., El-Harbawi, M., Al-Awadi, A. S., El Blidi, L., Alrashed, M. M., & Yin, C. Y. (2023). Enhanced Adsorption of Methylene Blue Using Phosphoric Acid-Activated Hydrothermal Carbon Microspheres Synthesized from a Variety of Palm-Based Biowastes. Coatings, 13(7), 1287. https://doi.org/10.3390/coatings13071287.

Basu, S., Ghosh, G., & Saha, S. (2018). Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142. https://doi.org/10.1016/j.psep.2018.04.015.

Castro, L. E. N., Matheus, L. R., Sganzerla, W. G., & Colpini, L. M. S. (2025). Valorization of residual ashes from boiler combustion process into activated carbon for adsorption of food industry wastewater. International Journal of Environmental Science and Technology, 22(7), 5341–5362. https://doi.org/10.1007/s13762-024-05998-7.

Dimbo, D., Abewaa, M., Adino, E., Mengistu, A., Takele, T., Oro, A., & Rangaraju, M. (2024). Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata. Result in Engineering, 21, 101910. https://doi.org/10.1016/j.rineng.2024.101910.

Fadilla, P. J., Sururi, M. R., Marganingrum, D., & Dirgawati, M. (2022). Utilization of Bottom Ash as an Adsorbent for Color and COD Removal for Textile Industry Waste. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 19(1), 78-88.

https://doi.org/10.14710/presipitasi.v19i1.78-88.

Fito, J., Abewaa, M., Mengistu, A. et al. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep, 13, 5427 (2023). https://doi.org/10.1038/s41598-023-32341-w.

GAPKI. (2024). Ekspor melonjak, Stok turun [Siaran Pers]. Diperoleh dari : https://gapki.id/news/2024/08/29/ekspor-melonjak-stok-turun/.

Haryono, Noviyanti, A. R., & Ernawati, E. E. (2023). Sintesis, karakterisasi, dan uji adsorpsi komposit silika/karbon dari limbah sekam padi sebagai adsorben tembaga (II). Jurnal Teknologi Lingkungan, 24 (1), 058-066. https://doi.org/10.55981/jtl.2023.241.

Hasyim, U. H., Kurniaty, I., Mahmudah, H., & Hermanti, M. (2019). Pengaruh waktu adsorpsi asam lemak bebas dalam minyak kelapa sawit mentah pada pembuatan bioadsorben limbah batang pisang. Konversi, 8(1), 61 – 69. https://doi.org/10.24853/konversi.8.1.10.

Ifa, L., Faudzal, M., & Nurjannah, N. (2018). Kelapa sawit menggunakan adsorben (zeolit dan bioarang sekam padi). Journal of Chemical Process Engineering. 03(02), 8–11.

Jedynak, K., & Charmas, B. (2024). Adsorption properties of biochars obtained by KOH activation. Adsorption, 30(2), 167–183. https://doi.org/10.1007/s10450-023-00399-7.

Khairiah, H., Fatmayati, & Dhora, A. (2023). Pemanfaatan limbah padat kelapa sawit untuk pemurnian minyak goreng bekas. JUTIN : Jurnal Teknik Industri Terintegrasi, 7(1), 460-469. https://doi.org/10.31004/jutin.v7i1.24720.

Kristina, T., Assiddiqi, T. D., Setiawan, B. I., Arif, C., & Kurniawan, A. (2023). Kinerja Unit dan Isoterm Adsorpsi Filtrasi Multimedia Pada Sistem Resirkulasi Akuakultur Ikan Hias Berdasarkan Variasi Ketebalan Media dan Debit Aliran. Jurnal Ilmu Lingkungan, 21(4), 933-945. https://doi.org/10.14710/jil.21.4.933-945.

Lengke, G., Lembang, T.O., Saleh, M., Pasae, Y., & Djonny, M. (2024). Evaluasi kualitas Minyak Sawit Mentah (CPO) PT Suryaraya Lestari I berdasarkan parameter FFA, kadar air, DOBI, dan kadar pengotor. Paulus Chem Engineering Journal, 2(1), 6-11. https://doi.org/10.63365/pspcs213.

Miri, N. S. S., & Narimo. (2022). Review : Kajian persamaan isoterm Langmuir dan Freundlich pada adsorpsi logam berat Fe(II) dengan zeolit dan karbon aktif . Jurnal Kimia dan Rekayasa, 2(2), 58–71.

Neme, I., Gonfa, G., & Masi, C. (2022). Activated carbon from biomass precursors using phosphoric acid : a review. Heliyon, 8, e11940. https://doi.org/10.1016/j.heliyon.2022.e11940.

Nirmala, D., Pelita, E., Desniorita, D., Youfa, R., Jayanti, R. T., Sahaq, A. B., & Permadani, R. L. (2024). Pemanfaatan limbah fly ash pabrik kelapa sawit sebagai adsorben low cost untuk pemucatan crude palm oil. Jurnal Integrasi Proses, 13(2), 153–159. http://dx.doi.org/10.62870/jip.v13i2.28882.

Nurdiansyah, N., Hidayat, C., & Suroto, D. (2025). Boiler Ash of Oil Palm Shell as Adsorbent for Lead Adsorption. agriTECH, 45(2), 177-186. https://doi.org/10.22146/agritech.93514

Pamungkas, R. B., Karimah, K., & Puspawiningtiyas, E. (2022). Activation of carbon using microwave-assisted hydrochloric acid for urea adsorption. RiCE: Research in Chemical Engineering, 1(1), 28–35. https://doi.org/10.30595/rice.v1i1.10.

Phetrungnapha, A., Wiengnak, N., & Maikrang, K. (2023). Removal of free fatty acid from waste cooking oil using an adsorbent derived from cassava peels. Korean J. Chem. Eng, 40, 2253 – 2262. https://doi.org/10.1007/s11814-023-1413-3.

Rangkuti, I. U. P., Purwanto H, & Pohan, H. S. U. (2021). Pengaruh jenis aktivator adsorben abu boiler pabrik kelapa sawit terhadap mutu minyak sawit mentah. Jurnal Teknik pertanian Lampung, 10 (3), 351 – 355. http://dx.doi.org/10.23960/jtep-l.v10.i3.351-355.

Rupilu, G. N., Sunarti, S., & Manuhutu, J. B. Karakterisasi abu kerak boiler dari PT. Nusa Ina Group untuk adsorbsi logam Pb. (2024). MJoCE, 14(1), 47 – 59. https://doi.org/10.30598/MJoCEvol14iss1pp47-59.

Simatupang, G. A., Wondamina, N. W., & Oktavia, L. (2020). Pengaruh penambahan kalsium karbonat (CaCO3) pada kandungan asam lemak bebas pada minyak kelapa sawit restan. J. Pen. Kelapa Sawit, 29(2), 63-72. https://doi.org/10.22302/iopri.jur.jpks.v29i2.127.

Syahwandi, M., Rahmalia W., Zahara, T.A., & Usman, T. (2019). Adsorpsi asam lemak bebas dalam minyak sawit mentah menggunakan adsorben abu tandan kosong sawit. Indo. J. Pure App. Chem, 2(3), 121-129. https://doi.org/10.26418/indonesian.v2i3.36894.

Tan, B. A., Nair, A., Zakaria, M. I. S., Low, J. Y. S., Kua, S. F., Koo, K. L., Wong, Y. C., Neoh, B. K., Lim, C. M., & Appleton, D. R. (2023). Free Fatty Acid Formation Points in Palm Oil Processing and the Impact on Oil Quality. Agriculture, 13(5), 957. https://doi.org/10.3390/agriculture13050957.

Utomo, W. P., Jovita, S., Maghfur, B., Ratri, A., Afifah, P. A. I., & Yuhaneka, G. (2023). Studi adsorpsi zat warna indigosol yellow dengan karbon teraktivasi asam fosfat dari pirolisis ampas tebu. Akta kimia, 8(2), 138-159. http://dx.doi.org/10.12962/j25493736.v8i2.19477.

Wang, S., Lee, Y., Won, Y., Kim H., Jeong, S. E., Hwang, B. W., Cho, A. R., Kim, J. Y.,Park, Y. C., Nam, H., Lee, D. H., Kim, H., & Jo, S. H. (2022). Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption. Chem. Eng. Journal, 431 (1), 135378. https://doi.org/10.1016/j.cej.2022.135378.

Yahya, M.A., Al-Qodah, Z. and Ngah, C.Z. (2015) Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.05.

Yin, C. Y., Kadir, S. A. S. A., Lim, Y. P., Syed-Ariffin, S. N., & Zamzuri, Z. (2008). An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass waste in a boiler. Fuel Processing Technology, 89 (7), 693-696. https://doi.org/10.1016/j.fuproc.2007.12.012.

Yuliusman, & Afifah, T. M. (2021). Production of palm shell-based activated carbon by two stage phosphoric acid impregnation and impregnation and physician activation. IOP Conf. Series: Materials Science and Engineering, 1173 012019. https://doi.org/10.1088/1757-899X/1173/1/012019.

Downloads

Published

2025-08-30

How to Cite

Ardiansyah, N., Utami, A. A., Amir, A., & Ulfah, M. (2025). Performance Evaluation and Adsorption Isotherm of Activated Bottom Ash for Free Fatty Acid Removal. Sains Natural: Journal of Biology and Chemistry, 15(3), 154–161. https://doi.org/10.31938/jsn.v15i3.843

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Loading...