Isothermic Adsorption Study of Nitrate Ion Adsorption in Bioethanol Waste Using Quaternary Ammonium Polymer
DOI:
https://doi.org/10.31938/jsn.v15i1.770Keywords:
Adsorption, Polymer Ammonium Quarternary, Bioethanol, Isoterm, Nitrate IonsAbstract
The global shift towards renewable energy sources has led to a significant increase in bioethanol production, particularly from sugar mills. Despite being an environmentally friendly alternative to fossil fuels, bioethanol production produces large amounts of waste containing dangerous contaminants such as nitrate ions (NO₃⁻). These contaminants pose severe environmental and health risks, including water pollution and eutrophication. This study explores the use of ammonium polymer as an adsorbent and the influence of pH in the adsorption process as a promising technique for removing nitrate ions from bioethanol waste. Based on the analysis that has been carried out, the optimal pH for adsorption of nitrate ions is around 9, where the removal efficiency (%RE) reaches 98.43% and the adsorption capacity (Qe) is 24.86 mg/g. These experiments show that the Freundlich model, with a heterogeneity factor (n) of 1.0947 and a Freundlich constant (KF) of 1.92 x 10³ units, provides the best fit to the adsorption data, indicating a heterogeneous adsorption process with a strong affinity for nitrate ions.
Downloads
References
Aini, N., Rahayu, A., Jamilatun, S., & Mufandi, I. (2024). A case study on functional polymer modification of cacao husk for enhanced removal of nitrate and phosphate from vinasse waste. Case Studies in Chemical and Environmental Engineering, 10 (May), 100814. https://doi.org/10.1016/j.cscee.2024.100814
Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393 (January), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Bremers, G., Birzietis, G., Blija, A., Skele, A., Rucins, A., & Danilevics, A. (2010). Evaluation Usability of Water Adsorption and Rectification in. Engineering for Rural Development, 27, 154–157.
Cerofolini, G. I. V, Jaroniec, M., & Sokotowski, S. (1978). A theoretical isotherm for adsorption on heterogeneous surface. Polymer, 256 (5), 471–477.
Dewi, S. N., Joko, T., & Dewanti, N. A. Y. (2016). Analisis Risiko Kesehatan Lingkungan Pencemaran Nitrat (No3) Pada Air Sumur Gali Di Kawasan Pertanian Desa Tumpukan Kecamatan Karangdowo Kabupaten Klaten. Jurnal Kesehatan Masyarakat, 4 (5), 204–212. http://ejournal-s1.undip.ac.id/index.php/jkm
Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie, 57U (1), 385–470. https://doi.org/doi:10.1515/zpch-1907-5723
Hansen, J. B. (1995). Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts BT - Ammonia: Catalysis and Manufacture (A. Nielsen (ed.); pp. 149–190). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79197-0_4
Harahap, M. R., Amanda, L. D., & Matondang, A. H. (2022). Analisis Kadar Cod (Chemical Oxygen Demand) Dan Tss (Total Suspended Solid) Pada Limbah Cair Dengan Menggunakan Spektrofotometer Uv-Vis. Amina, 2 (2), 79–83. https://doi.org/10.22373/amina.v2i2.772
Kanagalakshmi, M., Devi, S. G., Ananthi, P., & Pius, A. (2024). Adsorption Isotherms and Kinetic Models BT - Carbon Nanomaterials and their Composites as Adsorbents (J. Tharini & S. Thomas (eds.); pp. 135–154). Springer International Publishing. https://doi.org/10.1007/978-3-031-48719-4_8
Karimi, S., Karri, R. R., Tavakkoli Yaraki, M., & Koduru, J. R. (2021). Processes and separation technologies for the production of fuel-grade bioethanol: a review. Environmental Chemistry Letters, 19 (4), 2873–2890. https://doi.org/10.1007/s10311-021-01208-9
Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40 (9), 1361–1403. https://doi.org/10.1021/ja02242a004
Mahmoodi, N. M., & Arami, M. (2008). Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. Journal of Applied Polymer Science, 109 (6), 4043–4048. https://doi.org/https://doi.org/10.1002/app.28547
Mustapha, S., Shuaib, D. T., Ndamitso, M. M., Etsuyankpa, M. B., Sumaila, A., Mohammed, U. M., & Nasirudeen, M. B. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Applied Water Science, 9 (6), 1–11. https://doi.org/10.1007/s13201-019-1021-x
Oladipo, B., Taiwo, A. E., & Ojumu, T. V. (2023). Bioethanol Recovery and Dehydration Techniques BT - Bioethanol: A Green Energy Substitute for Fossil Fuels (E. Betiku & M. M. Ishola (eds.); pp. 229–254). Springer International Publishing. https://doi.org/10.1007/978-3-031-36542-3_9
Rahayu, A., Hakika, D. C., Alfi, N., Amrillah, Z., & Veranica, V. (2023). Synthesis and characterization of ammonium polymer for anion removal in aqueous solutions. Polimery, 68 (10), 537–543.
Rajabi, M., Keihankhadiv, S., Suhas, Tyagi, I., Karri, R. R., Chaudhary, M., Mubarak, N. M., Chaudhary, S., Kumar, P., & Singh, P. (2023). Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review. Journal of Nanostructure in Chemistry, 13 (1), 43–65. https://doi.org/10.1007/s40097-022-00509-x
Sabzehmeidani, M. M., Mahnaee, S., Ghaedi, M., Heidari, H., & Roy, V. A. L. (2021). Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2 (2), 598–627. https://doi.org/10.1039/d0ma00087f
Saminem, F. (2021). Increasing Teachers’ Ability Using Zoom Meeting Applications in the Distance Learning Process Through Collaborative Assistance in Sd Negeri Bendo Kapanewon Samigaluh Kulon Progo Academic Year 2020/2021. IJCER (International Journal of Chemistry Education Research), 5 (2), 78–83. https://doi.org/10.20885/ijcer.vol5.iss2.art5
Shojaeipoor, F., Elhamifar, D., & Moshkelgosha, R. (2016). Removal of Pb(II) and Co(II) ions from aqueous solution and industrial wastewater using ILNO-NH2: Kinetic, isotherm and thermodynamic studies: Journal of the Taiwan Institute of Chemical Engineers, 67. https://doi.org/10.1016/j.jtice.2016.07.008
Syafaat, F., Suseno, A., & Arnelli, A. (2013). Kinetika Adsorpsi Anion Nitrat dan Fosfat pada Zeolit Alam Termodifikasi Surfaktan Hexadesiltrimetilammonium Klorida. Jurnal Kimia Sains Dan Aplikasi, 16 (3), 73–78. https://doi.org/10.14710/jksa.16.3.73-78
Tunjung Murti Pratiwi, N., Hariyani, S., Puspa Ayu, I., Apriadi, T., Iswantari, A., & Yuni Wulandari, D. (2019). Pengelolaan Kandungan Bahan Organik pada Limbah Cair Laboratorium Proling MSP-IPB dengan Berbagai Kombinasi Agen Bioremediasi. Jurnal Biologi Indonesia, 15 (1), 89–95. https://doi.org/10.47349/jbi/15012019/89
Veranica, Rahayu, A., Maryudi, Dhias Cahya Hakika, Lee Wah Lim, & Lia Anggresani. (2024). Isotherm Adsorption of Ion Phosphate from Vinasse Waste Using Quaternary Ammonium Polymer as Adsorbent in Term Effect of Temperature. Jurnal Sains Natural, 14 (2), 91–97. https://doi.org/10.31938/jsn.v14i2.720
Vigdorowitsch, M., Pchelintsev, A., Tsygankova, L., & Tanygina, E. (2021). Freundlich isotherm: An adsorption model complete framework. Applied Sciences (Switzerland), 11 (17), 1–7. https://doi.org/10.3390/app11178078
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nafira Alfi Zaini Amrillah, Aster Rahayu, Dhias Cahya Hakika, Vivi Sisca, Veranica, Firda Mahira Alfiata Chusna, Lia Anggresani, Lee Wah Lim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.