Detection of Pb(II) and Cr(III) Using Dy(III) Ion with Pyrazoline Derivatives Ligand
DOI:
https://doi.org/10.31938/jsn.v14i3.733Keywords:
dysprosium, complex compound, fluorescence, heavy metal, pyrazolineAbstract
Exposure to heavy metal ions Pb2+ and Cr3+ in Indonesia is getting more attention, especially in various industries and transportation. The sensor complex compound Dy3+ with fluorescence-based pyrazoline-derived ligands (fluorosensor) has the potential to detect heavy metal ions Pb2+ and Cr2+. This research was initiated by synthesizing the pyrazoline derivative ligand and then reacting it with Dy3+ metal ion. The formed Dy3+ complex compounds was then characterized using spectroscopic methods. The results of scanning complex compounds using a UV-Vis spectrophotometer obtained two maximum wavelengths namely at 255 and 359 nm are indicating the presence of a transition type n→π* and π→π*. The results of fluorescence spectrophotometer analysis obtained maximum fluorescence intensity of Dy3+ complex compound was in the wavelength at 370 nm with fluorescence intensity of 4273 a.u. Fluorescence based sensor studies of the Dy complex when Pb2+ and Cr3+ metal ions were added showed changes in fluorescence intensity so that the fluorosensor type was obtained for the Dy3+ metal ion complex compound with Pb2+ and Cr3+, namely "turn-on-off" and "turn-off" respectively.
Downloads
References
Afrida, M. (2013). Sintesis Senyawa Kompleks [ZnII(4’-(2-thienyl)-2,2’:6’,2”-terpyridine)(NO3)2] dan Aplikasinya Sebagai Fluorosensor Logam Berat (Master’s thesis). Universitas Indonesia, Depok.
Al-jibouri, M. N., Jabbar, A. I., & Musa, T. M. (2018). Synthesis and characterization of chromium(III), molybdenum(II), nickel(II), palladium(II), and platinum(II) complexes, derived from mixed ligands of pyrazole and 2,2-bipyridine. Oriental Journal of Chemistry, 34(3), 1518–1525. https://doi.org/10.13005/ojc/340343
Ameen, I., Tripathi, A. K., Siddiqui, A., Kapil, G., Pandey, S. S., & Tripathi, U. N. (2018). Synthesis, characterizations and photo-physical properties of novel lanthanum(III) complexes. Journal of Taibah University for Science, 12(6), 796–808. https://doi.org/10.1080/16583655.2018.1516028
Ding, P., Xia X., Lingli Z., Zengchun X., Qinghong Z., Jianmei J., and Guiying X. 2017. On-Off-On Fluorescent Oligomer as a Chemosensor For The Detection Of Manganese(VII), Sulfur(II), and Aldehydes Based On The Inner Filter Effect. RSC Advances. 7, 3051-3058.
Hakim, Y.Z., & Agustino, Z. (2016). A Fluorescence Study of Pyrazole Derrivative 2-(1,5-diphenyl-4,5-dihydro-1H-pyrazole-3-yl)pyridine Upon Addition of La3+ and Eu3+ Ions. International Conference on Materials, Manufacturing and Mechanical Engineering. ISBN: 978-1-60595-413-4.
Hermawati, E.S., Suhartana., dan Taslimah. (2016). Sintesis dan Karakterisasi Senyawa Kompleks Zn(II)-8Hidroksukuinolin. Jurnal Kimia Sains dan Aplikasi. 19(3), 94-98.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009.
Kamaluddin, A. F., Zulys, A., & Ivandini, T. A. (2020). Synthesis of lanthanum-perylene complex compounds as fluorosensors for selective detection of Cu2+ and Pb2+. AIP Conference Proceedings, 2242 (June). https://doi.org/10.1063/5.0013011
Lakowicz, J.R. (2006a). Principles of Fluorescence Spectroscopy (3rd Ed). University of Maryland School of Medicine Baltimore: Maryland, USA.
Lakowicz, J.R. (2006b). Principles of fluorescence spectroscopy. Springer Science & Business Media.
Liu, M. J., Wu, S. Q., Li, J. X., Zhang, Y. Q., Sato, O., & Kou, H. Z. (2020). Structural Modulation of Fluorescent Rhodamine-Based Dysprosium(III) Single-Molecule Magnets. Inorganic Chemistry, pubs.acs.org. https://dx.doi.org/10.1021/acs.inorgchem.9b03105.
Melnikov, Andrey G. Bykov, Denis A. Varezhnikov, Alexey S. Sysoev, Victor V. Melnikov, Gennady V. (2022). Toward a Selective Analysis of Heavy Metal Salts in Aqueous Media with a Fluorescent Probe Array. Sensors, 22(4), 1465-1478.
Muneera, M. S., & Joseph, J. (2016). Design, synthesis, structural elucidation, and pharmacological evaluation of metal complexes with pyrazoline derivatives. Journal of Photochemistry and Photobiology B: Biology, 163, 57–68. https://doi.org/10.1016/j.jphotobiol.2016.08.010
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Nasaruddin, N. H., Ahmad, S. N., Bahron, H., Rahman, N. M. M. A., & Yusof, N. S. M. (2021). Schiff bases and their la(III) complexes: Conventional and microwave-assisted synthesis, physicochemical and spectroscopic analysis. Malaysian Journal of Chemistry, 23(2), 91–101. https://doi.org/10.55373/mjchem.v23i2.1002
Syahputri, Y., Sutanto, S., & Kusumawardani, L. J. (2021). Synthesis of Ligand para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl) benzene by Aldol Condensation Method. Helium: Journal of Science and Applied Chemistry, 1(1), 25–29. https://doi.org/10.33751/helium.v1i1.2953
Vidya Sagar Babu, S., Krishna Rao, K. S. V., & Lee, Y. I. (2017). Synthesis, characterization, luminescence and DNA binding properties of Ln (III)-Schiff base family. Journal of the Chilean Chemical Society, 62(2), 3447–3453. https://doi.org/10.4067/S0717-97072017000200006
Wahyuni, S., & Pratiwi, R. (2019). Penggunaan Kemosensor Untuk Mendeteksi Ion Logam. Farmaka, 4(3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yulian Syahputri, Sutanto, M. Daud Mahmudin, Mohammad Rommy Izha Ramadhan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.