A Review of Extraterrestrial Organic Carbon and Its Potential Impact of Life on Earth

A Review of Extraterrestrial Organic Carbon and Its Potential Impact of Life on Earth

Authors

  • Firza Yarkasih Universitas Negeri Surabaya
  • Tutut Nurita Universitas Negeri Surabaya https://orcid.org/0000-0002-9700-9057
  • Nariyah Al-Zahzamri Universitas Negeri Surabaya
  • Riska Pratiwi Universitas Negeri Surabaya

DOI:

https://doi.org/10.31938/jsn.v15i1.731

Keywords:

Organic Carbon, Anaerobic Organism, Bacterial, Microbial, Earth

Abstract

Meteorites bombarded the Earth's surface during the early days, early evolution and proliferation of life. It has the potential to provide a source of abiotic organic carbon to support early life. This study aims to analyze research methods used in detecting the use of space organic carbon, analyze research results related to the role of space organic carbon, and provide further understanding to researchers related to organic carbon from space and its potential role and use in human life on earth. This study uses a systematic review method using 15 selected sources from a total of 50 sources of information on national and international news and journal articles related to space organic carbon and its potential. The results of this study showed that extraterrestrial organic carbon produces a source of carbon that is beneficial for microorganisms to integrate into their proteins. By combining inverse stable isotope labeling and infrared spectroscopy, this study shows that organic carbon from Aguas Zarcas carbon chondrite can be harnessed for cell growth. Previous discoveries have also shown that aerobic microbial communities have the potential to be in future human space settlement plans to metabolically access and research carbonaceous asteroid material.

Downloads

Download data is not yet available.

Author Biography

Tutut Nurita, Universitas Negeri Surabaya

S1 Pendidikan Ilmu Pengetahuan Alam Universitas Negeri Surabaya

ID Sinta : 5993387

ID Scopus : 57196085795

ID Google Scholar : 4xlUq6cAAAAJ

References

Aponte, J. C., McLain, H. L., Simkus, D. N., Elsila, J. E., Glavin, D. P., Parker, E. T., Dworkin, J. P., Hill, D. H., Connolly, H. C., & Lauretta, D. S. (2020). Extraterrestrial organic compounds and cyanide in the CM2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteoritics & Planetary Science, 55(7), 1509–1524. https://doi.org/10.1111/maps.13531

Arif, A. (2023). Bennu Asteroid Samples Contain Water and Carbon which are Important for Life. Accessed May, 5, 2024.

Azarian, M., Yu, H., Shiferaw, A. T., & Stevik, T. K. (2023). Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment. Logistics, 7(4), 89. https://doi.org/10.3390/ logistics7040089

Bernstein, M. (2006). Prebiotic materials from on and off the early Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1474), 1689–1702. https://doi.org/10.1098/rstb.2006.191 3

Bijlani, S., Singh, N. K., Eedara, V. V. R., Podile, A. R., Mason, C. E., Wang, C. C. C., & Venkateswaran, K. (2021). Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Frontiers in Microbiology, 12. https:// doi.org/10.3389/fmicb.2021.639396

Chyba, C., & Sagan, C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355(6356), 125–132.

Cronin, J. R., & Chang, S. (1993). Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. The Chemistry of Life’s Origins, 209–258.

Delaye, L., & Lazcano, A. (2005). Prebiological evolution and the physics of the origin of life. Physics of Life Reviews, 2(1), 47–64. https://doi.org/10.1016/j.plrev.2004.12.002

Enya, K., Yoshimura, Y., Kobayashi, K., & Yamagishi, A. (2022). Extraterrestrial Life Signature Detection Microscopy: Search and Analysis of Cells and Organics on Mars and Other Solar System Bodies. Space Science Reviews, 218(6), 49. https://doi.org/10.1007/s11214-022-00920-4

Garvie, L. A. J. (2021). Mineralogy of the 2019 Aguas Zarcas (CM2) carbonaceous chondrite meteorite fall. American Mineralogist, 106(12), 1900–1916. https:// doi.org/10.2138/am-2021-7815

Ghafar, M., Kartina, N., Mulyadi, M., Hidayat, M., & Kurniawati, K. (2019). Kandungan Karbon Tanah Di Kawasan Hutan Sekunder Pegunungan Deudap Pulo Aceh Kabupaten Aceh Besar. Prosiding Seminar Nasional Biologi, Teknologi Dan Kependidikan, 6(1).

Han, J. M., Song, H.-Y., Jung, J.-H., Lim, S., Seo, H. S., Kim, W. S., Lim, S.-T., & Byun, E.-B. (2023). Deinococcus radiodurans-derived membrane vesicles protect HaCaT cells against H2O2-induced oxidative stress via modulation of MAPK and Nrf2/ARE pathways. Biological Procedures Online, 25(1), 17. https://doi.org/10.1186/s12575-023-00211-4

Jenniskens, P., Schaller, E. L., Laux, C. O., Wilson, M. A., Schmidt, G., & Rairden, R. L. (2004). Meteors Do Not Break Exogenous Organic Molecules into High Yields of Diatomics. Astrobiology, 4(1), 67–79. https://doi.org/10.1089/1531107047 73600249

Kerraouch, I., Kebukawa, Y., Bischoff, A., Zolensky, M. E., Wölfer, E., Hellmann, J. L., Ito, M., King, A., Trieloff, M., Barrat, J.-A., Schmitt-Kopplin, P., Pack, A., Patzek, M., Hanna, R. D., Fockenberg, T., Marrocchi, Y., Fries, M., Mathurin, J., Dartois, E., … Kondo, M. (2022). Heterogeneous nature of the carbonaceous chondrite breccia Aguas Zarcas – Cosmochemical characterization and origin of new carbonaceous chondrite lithologies. Geochimica et Cosmochimica Acta, 334, 155–186. https://doi.org/10.1016/j.gca.2022 .07.010

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(2004), 1–26.

Lal, R. (2009). The potential for soil carbon sequestration. International Food Policy Research Institute (IFPRI).

Mackenzie, F. T., & Lerman, A. (2006). Carbon in the Geobiosphere:-Earth’s Outer Shell (Vol. 25). Springer Science & Business Media.

Martins, Z. (2011). Organic Chemistry of Carbonaceous Meteorites. Elements, 7(1), 35–40. https://doi.org/10.2113/gselements.7.1.35

Martins, Z., Botta, O., Fogel, M. L., Sephton, M. A., Glavin, D. P., Watson, J. S., Dworkin, J. P., Schwartz, A. W., & Ehrenfreund, P. (2008). Extraterrestrial nucleobases in the Murchison meteorite. Earth and Planetary Science Letters, 270(1–2), 130–136. https://doi.org/10.1016/j.epsl.2008.03.026

Maulida, S. M., & Tarigan, P. (2016). Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose avicel PH101 using sorbitol as plasticizer. J. Phys. Conf. Ser, 710(1).

Mautner, M. N., Conner, A. J., Killham, K., & Deamer, D. W. (1997). Biological Potential of Extraterrestrial Materials. Icarus, 129(1), 245–253. https://doi.org/10.1006/icar.1997.5786

Muhamadali, H., Chisanga, M., Subaihi, A., & Goodacre, R. (2015). Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of E. coli Cells at Community and Single Cell Levels. Analytical Chemistry, 87(8), 4578–4586. https://doi.org/10.1021/acs.analchem. 5b00892

Osinski, G. R., Cockell, C. S., Pontefract, A., & Sapers, H. M. (2020). The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 20(9), 1121–1149. https://doi.org/10.1089/ast.2019.2203

Pizzarello, S., Yarnes, C. T., & Cooper, G. (2020). The Aguas Zarcas (CM2) meteorite: New insights into early solar system organic chemistry. Meteoritics & Planetary Science, 55(7), 1525–1538.

Ryder, G., Koeberl, C., & Mojzsis, S. J. (2000). Heavy bombardment of the Earth at~ 3.85 Ga: The search for petrographic and geochemical evidence. Origin of the Earth and Moon, 475.

Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C., & O’hUallachain, D. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy, 38, 45–58.

Sephton, M. A. (2005). Organic matter in carbonaceous meteorites: past, present and future research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2729–2742. https://doi.org/10. 1098/rsta.2005.1670

Sick, V. (2024). How does carbon capture benefit the Earth? We mapped out those who gain and lose because of this practice. Accessed May, 5, 2024.

Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., Hatcher, B., Cox, C. L., Dyachenko, A., & Zhang, W. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of Clinical Investigation, 119(5), 1322–1334.

Sutherland, J. D. (2016). The Origin of Life—Out of the Blue. Angewandte Chemie International Edition, 55(1), 104–121. https://doi.org/10.1002/anie.201506585

Tait, A. W., Gagen, E. J., Wilson, S., Tomkins, A. G., & Southam, G. (2017). Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers. Frontiers in Microbiology, 8. https://doi.org/10.3389/ fmicb.2017.01227

Tomkins, A. G., Genge, M. J., Tait, A. W., Alkemade, S. L., Langendam, A. D., Perry, P. P., & Wilson, S. (2019). High Survivability of Micrometeorites on Mars: Sites With Enhanced Availability of Limiting Nutrients. Journal of Geophysical Research: Planets, 124(7), 1802–1818. https://doi.org/10.1029/2019JE006005

Tunney, L. D., Hill, P. J. A., Herd, C. D. K., Hilts, R. W., & Holt, M. C. (2022). Distinguishing between terrestrial and extraterrestrial organic compounds in the CM2 Aguas Zarcas carbonaceous chondrite: Implications for intrinsic organic matter. Meteoritics & Planetary Science, 57(4), 883–911. https://doi.org/10.1111/ma ps.13803

Waajen, A. C., Lima, C., Goodacre, R., & Cockell, C. S. (2024). Life on Earth can grow on extraterrestrial organic carbon. Scientific Reports, 14(1), 3691. https://doi.org/10.1038/s41598-024-54195-6

Waajen, A. C., Prescott, R., & Cockell, C. S. (2022). Meteorites: beneficial or toxic for life on Early Earth? Growth of an anaerobic microbial community on a carbonaceous chondrite. Microbiology Society.

Xavier, J. C., Gerhards, R. E., Wimmer, J. L. E., Brueckner, J., Tria, F. D. K., & Martin, W. F. (2021). The metabolic network of the last bacterial common ancestor. Communications Biology, 4(1), 413.

Yuliati, H., & Akhadi, M. (2005). Radionuklida Kosmogenik Untuk Penanggalan. Buletin Alara, 6(3), 241794.

Zeichner, S. S., Chimiak, L., Elsila, J. E., Sessions, A. L., Dworkin, J. P., Aponte, J. C., & Eiler, J. M. (2023). Position-specific carbon isotopes of Murchison amino acids elucidate extraterrestrial abiotic organic synthesis networks. Geochimica et Cosmochimica Acta, 355, 210–221. https://doi.org/10.1016/j.gca.2023.06.010

Downloads

Published

2025-01-30

How to Cite

Yarkasih, F., Nurita, T., Al-Zahzamri, N., & Pratiwi, R. (2025). A Review of Extraterrestrial Organic Carbon and Its Potential Impact of Life on Earth. JURNAL SAINS NATURAL, 15(1), 40–48. https://doi.org/10.31938/jsn.v15i1.731

Issue

Section

Review Articles

Metrics

Loading...