Potential Blending of Short Residues, Automotive Diesel Oil (ADO) and Kerosene for Marine Fuel Oil (MFO) Low Sulphur 180 Export Quality at PT. XYZ Using H-CAMS Simulation

Potential Blending of Short Residues, Automotive Diesel Oil (ADO) and Kerosene for Marine Fuel Oil (MFO) Low Sulphur 180 Export Quality at PT. XYZ Using H-CAMS Simulation

Authors

  • Agung Aldi Saputra Magister Teknik Kimia, Fakultas Teknologi Industri,Universitas Ahmad Dahlan
  • Samhani Mahendra Wijaya PT. Kilang Pertamina International
  • Erna Astuti Universitas Ahmad Dahlan
  • Aster Rahayu Magister Teknik Kimia, Fakultas Teknologi Industri,Universitas Ahmad Dahlan

DOI:

https://doi.org/10.31938/jsn.v14i1.595

Keywords:

MFO Low Sulfur, Short Residue, Kerosene, Automotive Diesel Oil (ADO), Export

Abstract

Marine Fuel Oil (MFO) Low Sulfur is a ship fuel for engines that have an rpm <300, which has a maximum sulfur content of 0.5% wt and a Kinematic Viscosity limit at a temperature of 50 ℃ with a maximum of 180 CSt. Blending MFO products has the potential to meet international market demand and optimize sales of MFO products in domestic and international markets. The change in specifications requested by PIMD (P International Marketing & Distribution) refers to the Decree of the Director General of Oil and Gas No. 0179.K/10/DJM.S/2019. This research aims to meet international market demand so that MFO (Marine Fuel Oil) products with new specifications are needed. This research uses a blending optimization method using Short Residue (SR), Automotive Diesel Oil (ADO), and Kerosene (KR) using simulation using H-CAMS software. This research focuses more on the critical values of MFO products, namely Density, Kinematic Viscosity, Flash Point, and Pour Point analysis. The blending simulation process has 12 variations between SR: ADO: KR. As the composition of ADO and Kerosene increases in the blending ratio, it causes a decrease in the Density, Flash Point, Kinematic Viscosity, and Pour Point values. In this research, the most optimum blending formula was found, namely formulas 4, 5, 10, and 11, all critical specifications in the manufacture of the MFO 180 LS product were met except for the Pour Point parameter, so this research needs to be continued by reducing the pour point value.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. (2015). D445-15a Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). 1–15. https://doi.org/10.1520/D0445-19A.In

ASTM D341-03. (2003). Standard Test Method for Viscosity-Temperature Charts for Liquid Petroleum Products. ASTM internacional, 1–5. http://www.astm.org/DATABASE.CART/HISTORICAL/D341-03.htm

Billah, M. (t.t.). Peningkatan Nilai Kalor Batubara Peringkat Rendah Dengan Menggunakan Minyak Tanah Dan Minyak Residu.

Boviatsis, M., Polemis, D.& Alexopoulos, A. (2022). An Assessment of the Most Sustainable Marine Fuel Based on the Present Regulatory Framework and Future Trends. Journal of Shipping and Ocean Engineering, 12(2), 43–52. https://doi.org/10.17265/2159-5879/2022.02.002

Cutting, G. A. G., & Haverly, C. A. (1995, September 1). A system for optimizing the scheduling and blending of crudes. OSTI.GOV.

Designation: D93 ? 20 Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester 1. (t.t.). https://doi.org/10.1520/D0093-20

Drews, A. (2008). Standard Practice for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. Manual on Hydrocarbon Analysis, 6th Edition, Reapproved 2017, 252-252–255. https://doi.org/10.1520/mnl10866m

Giakoumis, E. G., & Sarakatsanis, C. K. (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel, 222(February), 574–585. https://doi.org/10.1016/j.fuel.2018.02.187

Ginting, K. K. B., Sarungu, S., & Sanjaya, A. S. (2018). Optimasi Pembuatan Marine Diesel Oil (MDO) untuk Meningkatkan Profit Kilang Pertamina RU V Balikpapan. Jurnal Chemurgy, 1(2), 22. https://doi.org/10.30872/cmg.v1i2.1141

Hasna, G. R., & Salsabila, H. (2019). Proses Treatment Marine Fuel Oil (MFO) sebagai Bahan Bakar pada Mesin Diesel. Jurnal Kompetensi Teknik 11(1).

Jin, C., Sun, T., Ampah, J. D., Liu, X., Geng, Z., Afrane, S., Yusuf, A. A., & Liu, H. (2022). Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures. Renewable Energy, 195, 841–852. https://doi.org/10.1016/j.renene.2022.06.088

Nelyubov, D. V., Fakhrutdinov, M. I., Sarkisyan, A. A., Sharin, E. A., Ershov, M. A., Makhova, U. A., Makhmudova, A. E., Klimov, N. A., Rogova, M. Y., Savelenko, V. D., Kapustin, V. M., Lobashova, M. M., & Tikhomirova, E. O. (2023). New Prospects of Waste Involvement in Marine Fuel Oil: Evolution of Composition and Requirements for Fuel with Sulfur Content up to 0.5%. Journal of Marine Science and Engineering, 11(7). https://doi.org/10.3390/jmse11071460

Pappos, N., & Skjölsvik, K. O. (2002). The European marine fuel market - present and future. ENSUS 2002, International Conference on Marine Science and Technology for Environmental Sustainability, November 2002.

Parkhomchuk, E. V., Fedotov, K. V., Lysikov, A. I., Polukhin, A. V., Vorobyeva, E. E., Shamanaeva, I. A., Sankova, N. N., Shestakova, D. O., Reshetnikov, D. M., Volf, A. V., Kleymenov, A. V., & Parmon, V. N. (2023). Catalytic hydroprocessing of oil residues for marine fuel production. Fuel, 341. https://doi.org/10.1016/j.fuel.2023.127714

Pertamina, onesolution. (2019). Spesifikasi LSFO 180. https://onesolution.pertamina.com/Product/Download?filename=20201216033337atc_Spesifikasi%20LSFO%20180_380.pdf

Rizqi, E. Y., & Naryono, E. (2023). Studi Literatur Potensi Blending Residu Oil Mbc – Ptcf Untuk Mfo Low Sulphur Sebagai Bahan Bakar Kapal Di Pt. Pertamina. DISTILAT: Jurnal Teknologi Separasi, 6(2), 381–390. https://doi.org/10.33795/distilat.v6i2.121

Saleh, A., & Darmana, E. (2021). Peran Perawatan Marine Fuel Oil (Mfo) Guna Menjaga Kinerja Mesin Diesel Penggerak Utama Kapal Tetap Optimal. National Seminar on Maritime and Interdisciplinary Studies, 3(1), 7–11.

Sharma, V., Kalam Hossain, A., Griffiths, G., Cherukkattu Manayil, J., Vinu, R., & Duraisamy, G. (2024). Investigation of anaerobic digested pyrolysis oil and waste derived biodiesel blends as sustainable fuel for marine engine application. Fuel, 357. https://doi.org/10.1016/j.fuel.2023.129935

Uhler, A. D., Stout, S. A., Douglas, G. S., Healey, E. M., & Emsbo-Mattingly, S. D. (2016). Chemical Character of Marine Heavy Fuel Oils and Lubricants. Dalam Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification: Second Edition (hlm. 641–683). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809659-8.00013-9

Van, T.C, Ramirez, J., Rainey, T., Ristovski, Z., & Brown, R. J. (2019). Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transportation Research Part D: Transport and Environment, 70, 123–134. https://doi.org/10.1016/j.trd.2019.04.001

Yoeswono, Y., Purwanto, D., & Puspaningrum, D. K. (2022). Perengkahan Residu Minyak Bumi PPSDM Migas Dengan Metode Aquathermolysis. Jurnal Nasional Pengelolaan Energi MigasZoom, 4(1). https://doi.org/10.37525/mz/2022-1/366

Yudandhiss, C. D. R., Salmahaminati, & Sahadad. (2022). Quality Assurance on Pour Point ASTM D-97, Flash Point ASTM D-93 and Kinematic Viscosity ASTM D-445 at PPSDM Migas Cepu Petroleum Laboratory. IJCR (Indonesian Journal of Chemical Research), 7(1), 17–26.

Downloads

Published

2024-01-30

How to Cite

Saputra, A. A., Samhani Mahendra Wijaya, Astuti, E., & Aster Rahayu. (2024). Potential Blending of Short Residues, Automotive Diesel Oil (ADO) and Kerosene for Marine Fuel Oil (MFO) Low Sulphur 180 Export Quality at PT. XYZ Using H-CAMS Simulation. JURNAL SAINS NATURAL, 14(1), 13–23. https://doi.org/10.31938/jsn.v14i1.595

Metrics

Loading...