Preparation, Characterization and Phenol Adsorption of Mangifera kemanga Blume Seed
DOI:
https://doi.org/10.31938/jsn.v12i3.410Abstract
The potential of Mangifera kemanga Blume., an inexpensive biosorbent, for removing of hazardous substances such as phenols from its aqueous solution has been studied. The authors used Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) Spectrometers, and quantification to study the morphology and characterization of Mangifera kemanga Blume. seeds (MKS) biomass, as well as batch experiments to determine the percentage of phenol removed when pH, contact period, biosorbent dosage, and phenol concentration were varied. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models had been used to interpret the experimental results. The optimal values found in our research correspond to a pH of 6 for an MKS dosage of 35 g/L and a contact time of 45 minutes for initial phenol concentrations ranging from 5 to 25 mg/L. The result indicated that MKS was a particularly successful adsorbent for phenol chemisorption from aqueous solution.
Keywords:Â adsorption;Â Â endemic;Â Bogor;Â Mangifera kemanga;Â phenol
Downloads
References
Adewuyi, A., Gennaro, A., & Durante, C. (2015). Bioadsorbent Hura Crepitans for the removal of phenol from solution. Journal of Water Chemistry and Technology, 37(6), 277–282. https://doi.org/10.3103/S1063455X1506003X
Arrisujaya, D. (2014). Efisiensi Penyerapan Kulit Buah Atap (Arenga pinnata) Mengikat Ion-Ion Logam Kromium Dalam Larutan. Jurnal Sains Natural, 4(1), 58–67. https://doi.org/10.31938/jsn.v4i1.76
Arrisujaya, D., Ariesta, N., & Maslahat, M. (2019). Removal of chromium (VI) from aqueous solutions using Diospyros discolor seed activated with nitric acid: Isotherm and kinetic studies. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 79(6), 1214–1221. https://doi.org/10.2166/wst.2019.125
Dubinin, M. M., Zaverina, E. D., & Radushkevich, L. V. (1947). Sorption and structure of active carbons I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723
Haddow, G. D., Bullock, J. A., & Coppola, D. P. (2014). Natural and Technological Hazards and Risk Assessment. In Introduction to Emergency Management (pp. 31–70). Elsevier. https://doi.org/10.1016/B978-0-12-407784-3.00002-4
Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160(2–3), 576–581. https://doi.org/10.1016/j.jhazmat.2008.03.028
Hevira, L., Zilfa, Rahmayeni, Ighalo, J. O., & Zein, R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell. Journal of Environmental Chemical Engineering, 8(5), 104290. https://doi.org/10.1016/j.jece.2020.104290
Hu, Q., & Zhang, Z. (2019). Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005
Khan, Md. M. R., Sahoo, B., Mukherjee, A. K., & Naskar, A. (2019). Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste. SN Applied Sciences, 1(11), 1–15. https://doi.org/10.1007/s42452-019-1537-6
Khraisheh, M., Al-Ghouti, M. A., & AlMomani, F. (2020). P. putida as biosorbent for the remediation of cobalt and phenol from industrial waste wastewaters. Environmental Technology and Innovation, 20(2020), 101148. https://doi.org/10.1016/j.eti.2020.101148
Langmuir, I. (1918). The adsorption of gaseson plane surfaces of glass, mica and platinum. Journal of The American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
Legesse, M. B., & Emire, S. A. (2012). Functional and physicochemical properties of mango seed kernels and wheat flour and their blends for biscuit production. African Journal of Food Science and Technology, 3(9), 193–203.
Mandal, A., Mukhopadhyay, P., & Das, S. K. (2019). The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration. SN Applied Sciences, 1(2), 192. https://doi.org/10.1007/s42452-019-0203-3
Moyo, M., Pakade, V. E., & Modise, S. J. (2017). Biosorption of lead(II) by chemically modified Mangifera indica seed shells: Adsorbent preparation, characterization and performance assessment. Process Safety and Environmental Protection, 111, 40–51. https://doi.org/10.1016/j.psep.2017.06.007
Nazaruddin, N., Arrisujaya, D., Hidayat, Zein, R., Munaf, E., & Jin, J. (2014). Batch method for the removal of toxic metal from water using sugar palm fruit (Arenga pinnata Merr) shell. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2), 1619–1629.
Ponnuchamy, M., Kapoor, A., Pakkirisamy, B., Sivaraman, P., & Ramasamy, K. (2020). Optimization, equilibrium, kinetic and thermodynamic studies on adsorptive remediation of phenol onto natural guava leaf powder. Environmental Science and Pollution Research, 27, 20576–20597. https://doi.org/10.1007/s11356-019-07145-z
RamÃrez-GarcÃa, R., Gohil, N., & Singh, V. (2019). Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites (pp. 517–568). Elsevier. https://doi.org/10.1016/B978-0-12-813912-7.00021-1
Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1. https://doi.org/10.1186/s40643-017-0187-z
Sancoyo. (2018). Kemang, Identitas Flora Kabupaten Bogor. Pusat Konservasi Tumbuhan Kebun Raya-LIPI. http://krbogor.lipi.go.id/id/Kemang-Identitas-Flora-Kabupaten-Bogor
Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409–429. https://doi.org/10.1007/s41742-019-00175-y
Temkin, M. J., & Pyzhev, V. (1940). Recent modifications to Langmuir Isotherms. Acta Physico-Chimica Sinica, 12, 217–222.
Zein, R., Arrisujaya, D., Hidayat, H., Elfia, M., Nazarudin, N., & Munaf, E. (2014). Sugar palm Arenga pinnata Merr (Magnoliophyta) fruit shell as biomaterial to remove Cr(III), Cr(VI), Cd(II) and Zn(II) from aqueous solution. Journal of Water Supply: Research and Technology - AQUA, 63(7), 553–559. https://doi.org/10.2166/aqua.2014.120
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Siti Hadiati Mardiah, Dian Arrisujaya, Devy Susanty, Nia Yuliani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.